
TECHNIQUES AND ALGORITHMS
FOR SOCIAL MEDIA

Platform for searcH of Audiovisual Resources
across Online Spaces

PHAROS

Project IST-45035

Deliverable D2.1.1 WP2.1

Deliverable
Version 1.0 – 30 September, 2007
Document ref: pharos.D211.L3S.WP2.1.V1.0

Programme Name: IST
Project Number: 45035
Project Title: . PHAROS
Partners: . Coordinator: ENG (IT)

Contractors: France Telecom (FR), Fast Search
& Transfer (NO), L3S Research Center (DE),
Fraunhofer IDMT (DE), Ecole Polytechnique Fed-
erale de Lausanne (CH), Knowledge Media Insti-
tute Open University (UK), Fundació Barcelona
Media Universitat Pompeu Fabra (ES), Techni-
cal Research Centre of Finland VTT (FI), Circom
Regional (FR), Metaware (IT), Web Models (IT),
SAIL LABS Technology (AT)

Document Number: D2.1.1
Work-Package: . WP2.1
Deliverable Type: Report
Contractual Date of Delivery: 30/09/2007
Actual Date of Delivery: 10/10/2007 (projected)
Title of Document: Techniques and Algorithms for Social Media
Author(s): . L3S (Bhaskar Mehta, Avare Stewart, Chen Ling,

Raluca Paiu, Claudiu Firan, Kerstin Bischoff,
Sergey Chernov), VTT (Vainikainen Sari), FT
(Cecile Bothorel). FBM (Oscar Celma)

Editor: . Bhaskar Mehta (L3S)

Approval of this report: Executive Board
History: .
Keyword List: . social media, recommender systems, tagging,

personalization, blogs
Availability: . This report is limited to PHAROS consortium dis-

tribution.

PHAROS: Techniques and Algorithms for Social Media Page i Version 1.0

Disclaimer

This document contains confidential information in form of description of the PHAROS project
findings, work and products and its use is strictly regulated by the PHAROS Consortium Agree-
ment and by Contract no. FP6-45035. Neither the PHAROS Consortium nor any of its officers,
employees or agents shall be responsible or liable in negligence or otherwise howsoever in
respect of any inaccuracy or omission herein. Without derogating from the generality of the
foregoing neither the PHAROS Consortium nor any of its officers, employees or agents shall
be liable for any direct or indirect or consequential loss or damage, personal injury or death,
caused by or arising from any information, advice or inaccuracy or omission herein. This doc-
ument has been produced with the assistance of the European Union. The contents of this
document are the sole responsibility of PHAROS consortium and can in no way be taken to
reflect the views of the European Union.

PHAROS is a project partially funded by the European Union.

PHAROS: Techniques and Algorithms for Social Media Page ii Version 1.0

Table of contents

1 Introduction 1

1.1 What is Social Media? . 1
1.2 Social Media in PHAROS . 2

2 State of the Art 4

2.1 Collaborative Tagging. 4
2.1.1 Motivations for tagging . 4
2.1.2 Characteristics of tags - strengths and problems . 5
2.1.3 Tagging habits and time sensitivity . 6
2.1.4 Clustering tags and building ontologies from Folksonomies 6
2.1.5 Approaches to support tagging - Tag suggestions . 7
2.1.6 Enhanced information access via tags / browsing by tags 7
2.1.7 Exploring tags for (multimedia) information retrieval . 8

2.2 Opinion mining . 8
2.2.1 NLP shallow parsing . 9
2.2.2 Machine Learning Techniques . 11
2.2.3 Combination of NLP and Machine Learning . 12

2.3 Blog Analysis . 13
2.3.1 Overview of Blogs and public forums . 13
2.3.2 Building user profiles from Blogs . 14

2.4 Recommendation Algorithms . 16
2.4.1 Collaborative filtering . 18

2.5 Recommendation and Latent Semantic Analysis . 20
2.6 Conclusions . 22

3 Algorithms For Creating User Profiles 23

3.1 Creating A User Profile By Analyzing User’s Tags . 23
3.1.1 Analysis Of User Tags . 24
3.1.2 Tagging Habits . 25
3.1.3 Time Sensitivity . 26
3.1.4 Tag Usage Frequency . 26
3.1.5 Tag Co-occurrence Usage Frequency . 27
3.1.6 Lexical Analysis . 29
3.1.7 Algorithm and Evaluation Result . 31

iii

3.1.8 Optional features. 36
3.1.9 Suggestions for handling tags within Pharos. 38
3.1.10 Conclusions and future work . 38

3.2 Information Diffusion In Blogosphere . 39
3.2.1 Problem Definition . 41
3.2.2 Discovery of Information Diffusion Paths . 44
3.2.3 Performance Study . 49
3.2.4 Related Work. 52
3.2.5 Conclusions and Future Work. 53

3.3 Opinion analysis in user-created textual contents . 53
3.3.1 Review analysis using NLP approach . 54
3.3.2 Opinion analysis using machine learning techniques approach 64
3.3.3 Conclusion and perspectives . 66

4 Algorithms For Personalization and Recommendation 68

4.1 Using User Generated Metadata For Music Recommendation . 68
4.1.1 Related Work. 68
4.1.2 Tag-Based Profiles vs. Track-Based Profiles. 70
4.1.3 Track-based Profiles . 71
4.1.4 Tag-based Profiles . 72
4.1.5 Music Recommendations . 74
4.1.6 Track-based Recommendations . 75
4.1.7 Tag-Based Recommendations . 75
4.1.8 Tag-Based Search . 76
4.1.9 Evaluation & Results. 78

4.2 Personalized Ranking using LSI . 80
4.2.1 Singular Value Decomposition (SVD). 80
4.2.2 Latent Semantic Analysis . 81
4.2.3 Personalized VLSI . 82

5 Conclusions & Future Work 85

PHAROS: Techniques and Algorithms for Social Media Page iv Version 1.0

Executive Summary

This deliverable titled Techniques And Algorithms For Social Media aims at describing the
advances made in the first 9 months of the PHAROS project in the area of Social Media. The
report has been authored by various partners participating in WP 2.1, and has been edited by
L3S Research Center.

The report focuses on the following Social Media: Blogs, Collaborative Tagging systems and
Recommender Systems. In addition, techniques for trust in Metadata are also described
briefly. Specifically, Chapter 1 gives a brief introduction of this document, and describes some
important background information about the role of Social Media in the PHAROS platform.
Chapter 2 reports current state-of-the-art algorithms for Social Media. Chapter 3 discusses the
details of new algorithms and techniques developed by the PHAROS consortium for building
user profiles. Recommendation and Personalization algorithms are discussed in Chapter 4.
Finally, conclusions and future work are discussed in Chapter 5.

This document provides a first draft of how to proceed in the implementation of social media
modules in the PHAROS platform. Although algorithms have been proposed in this report,
more work has to be done to engineer them and to integrate them into the overall platform
together with other modules. Following this report, there will be a internal report where archi-
tectural details are discussed in more details.

1 Introduction

The PHAROS project aims to build the next generation Audiovisual search engine. This is
indeed an idea whose time has come1; we now possess enough computational power and
storage resources to perform computationally intensive processing of music and video data.
This processing can go beyond facetted and metadata search into the more advanced content
and context oriented search domains. The vision of PHAROS is to successfully face the
challenge of scaling new technology to millions of video.

One important driving force in the growth of the Internet is the participation from end users.
Broadband connections been added at an ever growing pace in the recent past; in addition,
the consumer has been using the extra bandwidth for entertainment avenues like music, video
and gaming. Recently, a new trend has been noticed where end users are not just passive
observers but content creators as well; this has been referred to at Web 2.0. The phrase Web

2.0 refers to a perceived second generation of web-based communities and hosted services
such as social-networking sites, wikis and folksonomies which aim to facilitate collaboration
and sharing between users. The pace at which this new phenomenon is growing has sur-
prised many, and has lead to new business models using readily-available intuitive modular
elements [1]. It has been suggest that the addition of user generated content has increased
the economic value of the Web, potentially surpassing the impact of the dotcom boom. The
main success of Web 2.0 has been ushering in the age of Social Media as a low cost and
highly inclusive rival to traditional media.

1.1 What is Social Media?

Social media is a term referring to online technologies and practices that people use to share
content, opinions, insights, experiences, perspectives, and media themselves. It can take
various forms: text, images, video, or metadata. Traditional forms include bulletin boards and
online forums; newer forms include blogs, bookmark sharing, social networks, wikis and online
voting and reviewing.

There are obvious similarities with traditional media, however there are also a number of
characteristics which make social media fundamentally different from previous forms of media.
Social media is unbounded, unlike TV or radio broadcasts (time limits) or newspapers and
magazines (page bounded). Social Media is often authored by relatively unknown and non
professional people; it can be edited by people other than the authors themselves, and often
make use of multiple media at the same time. Often, the perception of others to social media
is available in real time, as opposed to time bound and restricted feedback in traditional media

1No one can resist an idea whose time has come. – Victor Hugo

PHAROS: Techniques and Algorithms for Social Media Page 1 Version 1.0

(e.g. letters to the editor).

On the flip side, social media can be very specific/narrow in appeal, and potentially unreli-
able. The quality of social media is usually below traditional media, though public editing has
proved very successful in projects like Wikipedia. The low startup time and investment leads to
unscrupulous fly-by-night operators who may potentially be motivated by private/commercial
interests. A commercial downside of social media is the degrading value of traditional me-
dia and the free usage of proprietary media without appropriate royalties being paid. Privacy
protection of readers and publishers is also a concern, especially among parents of young
(children) authors.

Inspite of all its drawbacks, the impact of social media is a positive one, and there are clear
benefits for service providers: companies and organizations can efficiently get feedback from
consumers and provide personalized services by observing their online interaction with social
media providers. Various people provide crucial information about themselves openly (email,
preferences, opinions etc) which were previously much more difficult to perceive and mea-
sure. This information can be used to provide personalized service and tailor service offering
to trends observed in social media. Researchers have found a high degree of correlation
between blog mentions and books sales [2] highlighting that online chatter maybe helpful in
predicting the popularity of traditional media.

1.2 Social Media in PHAROS

PHAROS is placed in a good position with respect to the new Web: there is a lot of momentum
in users annotating and tagging audiovisual sources. However, there is a gap between the
availability of this information and efficient exploitation for the purposes of improved access
to desired content. Further, personalization has been known to suffer from bootstrapping
problem, where by the experience for a new user can be unsatisfactory. In addition, there
are other avenues of user information where user express their strong and personal opinion;
this is the world of blogging, which is also a web 2.0 phenomenon. Other public spaces like
Social networks and online forums are also rich sources of information about people and their
preferences. The vision of PHAROS would be well served buy creating technology to bridge
the aforementioned gap.

The aim of this document is to describe the current technologies dealing with Social Media.
In addition, we report new algorithms and techniques developed by the PHAROS consortium
exploiting Social media for the purposes of search. The goal of the algorithms listed int his
document is to extract knowledge about users from available data on the web. This data can
be collected from public sources like blogs, review sites, collaborative projects like Wikipedia,
Del.icio.us etc. In addition, descriptions and metadata of content indexed by the PHAROS
search engine can also be extended using similar approaches, and used to increase relevance
of results to specific users.

Since the project is in its early stages, some of the work presented is likely to evolve to more

PHAROS: Techniques and Algorithms for Social Media Page 2 Version 1.0

PHAROS specific technology and software components. Here we discuss primarily the scien-
tific and research aspects of new social media technology. We will also release an updated
version of this document which Architectural implications of Social Media Technology will be
discussed in Detail.

PHAROS: Techniques and Algorithms for Social Media Page 3 Version 1.0

2 State of the Art

Social Media has been a hot topic for research in the last few years and continues to attract
attention and signifacnt research funding around the world. In order to create innovative algo-
rithms and techniques, we first investigate the state-of-the-art in the relevant areas of Social
Media. We look at the following in details: Collaborative Tagging, Opinion and Sentiment
analysis, Blog Analysis and Recommendation Algorithms.

2.1 Collaborative Tagging

Within the Web 2.0 context and its increased user participation, collaborative tagging has
become very popular. In various platforms, users assign freely selectable words – keywords
or category labels – to shared content e.g. bookmarks (del.icio.us, connotea.org), photos
(Flickr!), videos (YouTube) or songs (Last.fm) to describe, organize and easily share these
resources. Similarly, bloggers may tag their blog posts or even allow their readers to do so. A
review on the most important tagging systems is given in [3]. Some scientific work has been
done to research tagging motivations, patterns as well as to support the tagging process and
to explore how to exploit tagging to improve information retrieval in general. Research is also
underway on how eLearning [4] and Knowledge and Expertise Management in Organizations
[5] can benefit from such user generated metadata - or according to [6] just more content

provided for the resources.

2.1.1 Motivations for tagging

A systematic analysis of tagging systems shows that motivations for tagging are quite man-
ifold and so are the kind of tags used. Marlow et al. [7] identify organizational motivations
e.g. for tags that identify what (or who) something is about (biology) or what it is (book),
for tags refining existing categories, or for tags serving self-reference (myStuff) or task or-
ganization (toRead). Other reasons are opinion expression, the attraction of attention, and
self-presentation [7, 8]. The predominant motivation seems to vary depending on the kind
of application used: tagging rights, tagging support, aggregation model, object type, source
of material, resource connectivity and social connectivity probably influence why certain tags
are (not) used [7]. Thus, according to [9], in systems with free-for-all opinion expression, self-
presentation, activism and performance tags become more and more popular/ frequent while
in self-tagging systems like del.icio.us, users tag almost exclusively for their own benefit of en-

PHAROS: Techniques and Algorithms for Social Media Page 4 Version 1.0

hanced information organization [8]. For del.icio.us tags, the following summary can be made
out of the identified tag categories: topic, type of referenced resource, proper name (person,
company, product, event, and location), subjective tags (adjectives, ratings), self reference,
toDo tags and time. In [10], the following tag categories were found for Flickr! tags (describing
photos): place, time, event, name, action and camera.

2.1.2 Characteristics of tags - strengths and problems

Tags are an alternative means for information organization revealing as well certain informa-
tion about user interests and personality. While more traditional approaches rely on controlled
vocabularies, hierarchical and exclusive taxonomies, thesauri or even ontologies – all usually
compiled top-down by experts to assure metadata quality –, folksonomies (folk + taxonomy)
are usually flat, uncontrolled and dynamic. Via different tags, they allow for multiple catego-
rization of an information item and thus provide multiple entry points and facilitate serendipi-
tous encounters. Similarly, some (prototype) desktop applications [11, 12] aim at complement-
ing or even replacing the strict folder structure on the PC by tags as organizational metaphor.
However, tags do not allow for structured (location based) information access via subclasses
/ folders and they do not represent relationships between tags explicitly [13, 8]. Acknowledg-
ing this organizational problem of scaling a flat system, bundles were recently introduced in
del.ico.us to allow grouping of tags [14].

The success of tags and tagging is much based on the opportunity to use them any way that
the user finds useful and to choose any words he or she wants. The bottom-up or grass root
approach of tagging moreover faces some well-known problems: people use different words
to describe the same thing, or a word has several different meanings (polysemy). People may
also describe things at various levels of detail - an expert in a subject will use more detailed and
specific words, whereas others use more general words. Also different forms of the same word
(singulars, plurals, typos) [8] are to be found. Challenging as well in analyzing and utilizing
tags is describing things and concepts that would need two or more words. Here different
applications set different restrictions and give different opportunities. In del.icio.us a tag must
be one word, and if a user wants to describe a concept needing more than one word, he needs
to engage in a workaround. In some applications the creation of tags consisting of several
words is made easier. In searching or browsing tags, these problems lead to incomplete
result sets or to many undesirable results.

Some researchers have investigated how much this unstructured or possibly very idiosyn-
cratic1 labeling dominates the structure of tagging systems. Since sharing data relies on at
least some common ground, it seems that stable patterns evolve after some time. Golder &
Huberman [8] found that most pages in del.cio.us reach their peak (in terms of being added
as a bookmark and tagged) after 10 days. Moreover, a tags’s frequency remains nearly fixed
after it has been used for about 100 bookmarks, This means that relative tag proportions
become stable. In [15] and [16] folksonomies stabilized into a power law distribution - given

1A tag is used often by only one user

PHAROS: Techniques and Algorithms for Social Media Page 5 Version 1.0

sufficient active users [15]; these distributions are typical of complex systems (like human lan-
guage) and indicate that the use of a shared vocabulary converges eventually, i.e. semantics

emerge. Golder & Huberman [8] give two possible explanations: imitation of other user’s be-
havior and shared knowledge. However, a long-tail of idiosyncratic and low-frequency tags
remains. According to [15], these may only be used personally to tweak results and could be
ignored for general applications exploiting folksonomies.

Analyzing the network properties of folksonomies (del.icio.us, bibsonomy) [17] showed that
the characteristic path lengths between users, resources and tags (modelled in a tripartite
hypergraph) are relatively short and the network is highly connected. This small world property
of folksonomies enables serendipitous encounters of interesting users and contents. Again, a
stable pattern for tag-co-occurrences was found - a fat tailed distribution as a typical indicator
of the underlying complex dynamics of human interaction. Deviations from this curve may
probably be attributed to spamming activity.

2.1.3 Tagging habits and time sensitivity

In addition to differences in vocabularies, there are also differences between people in how
they tag. Some are very diligent and use many tags, some only few. Also, a single user’s
tagging habits evolve during time as they become more used to tagging and understand which
ways of tagging serve their personal interests best. Users have different habits to use tags
concurrently. The general habit is to tag from general tags to more detailed tags [8]; some
users use a lot of synonyms or different spelling variants (plural, singular, acronyms) of a
word or concept. As already mentioned, users also have different ways of combining words.
There are tags in which each word is separated by a certain character, by a hyphen, by an
underscore, by a slash or by a space, two separate tags can always be used together to
indicate specific meaning.

2.1.4 Clustering tags and building ontologies from Folksonomies

Since top-down-constructed ontologies are often very static/slowly-evolving, capturing the
emergent semantics of folksonomies in terms of inducing ontologies from tagging systems
seems promising. Mika [18], for example, exploits co-occurrence and properties of tags to
induce clusters and hierarchical orderings – super-concepts and sub-concepts – of tags. By
building an actor-concept graph from users and the tags that they assigned, different sub
communities can be modeled so that concepts appear in the context of the community that
they belong to. The author shows how to expand this idea for web pages in general. Similarly
by using a subsumption-based model, [14] induces faceted ontologies from Flickr! data, i.e.
non-exclusive ontologies that allow for multiple category membership.

PHAROS: Techniques and Algorithms for Social Media Page 6 Version 1.0

2.1.5 Approaches to support tagging - Tag suggestions

In bottom-up tagging systems, the lack of shared/controlled vocabulary may result in a long

tail of seldom used or unique tags. Since many users may only use few tags to describe
a resource, approaches were proposed to automatically find appropriate tags for resources.
TagAssist [19] is such a system that suggests suitable tags for unlabeled/new blog posts
based on similar labeled posts. In contrast to the tag suggestions found in systems like
del.icio,us, here not only popularity/frequency of a tag is considered. Besides normalization
and compression (or stemming) of tags, the system exploits different heuristics and informa-
tion retrieval measures to select the best candidate tags. A similar technique was presented in
[20]. An approach for personalized suggestions is given by [21]. Tags previously assigned by
the users are recommended for new web pages based on the similarity a website has with the
pages already tagged. In addition to automatically generating tags by finding similar tagged
content/context, [22] proposes the introduction of a reputation score for users to combat tag

spam. In suggesting tags from collective user authorities, a goodness measure (adjusted by
a reward-penalty algorithm) takes the criteria for a good tagging systems into account to spot
high quality tags (high coverage of multiple facets, high popularity, uniformity, of a certain
type/function).

2.1.6 Enhanced information access via tags / browsing by tags

Since tag clouds as aggregated information about tag-usage are an important way to access
tagged content, some papers are concerned with building more effective, clearly arranged
and properly displayed clouds. For example, the authors in [23] propose algorithms to resolve
the problem of inadequate font size display due to browser features. In [24], tags were used
to create a user profile and the corresponding visualizations for personal(ized) information
access. Usually tag clouds are built as alphabetically ordered lists of tags where the font
size represents the popularity (i.e. the prior usage frequency). In contrast, this approach also
considers relationships between tags in terms of tag co-occurrence as well as the dynamics of
tagging - the time sensitivity of tag importance. The co-occurrence was considered important,
because tag combinations provide more information about the user for two reasons; first, more
than one word may be needed to describe a concept and there may be different viewpoints or
aspects to a topic. By putting more emphasis on recent tags, it is possible to find out about new
and recent interests. The authors also experimented with different visualization techniques for
user profiles. However, this issue is still not sufficiently resolved. Similarly investigating the
visualization of tag evolution (in Flickr!), Dubinko et al. [25] developed algorithms to find the
most interesting tags to be displayed in Flash 2 animations.

2Marcomedia Flash is a popular UI technology supported by many Web Browsers

PHAROS: Techniques and Algorithms for Social Media Page 7 Version 1.0

2.1.7 Exploring tags for (multimedia) information retrieval

In [26], tag clouds are used in combination with content-based image retrieval techniques
to augment navigation possibilities (via tag browsing or image query by example) and to
ground the semantics provided by the tags into the image data. In [27], the authors simi-
larly show how low-level features like color and texture may help to overcome synonymy or
homonymy/polysemy, while social tags can be exploited to bridge the semantic gap to a cer-
tain extent. In music retrieval, tags can be used as an alternative or additional means to find
songs. For example, in [28] Last.fm songs are not only recommended based on the tracklists
(song and artist) of similar users, but also by considering (descriptive) tags. This way some
semantics may be included even without content analysis of songs. Based on the idea that
tags in bookmarking systems usually provide good summaries of web pages and that they
indicate the popularity of a page, [29] investigated the use of tags for improving web search.
Their SocialSimilarityRank, which measures the association between tags, and SocialPageR-
ank, which account for the popularity among taggers in terms of a frequency ranking, lead
to significant better web retrieval. Also in the style of PageRank[30], [16] suggest Adapted
PageRank and a FolkRank to improve efficient searching via personalized and topic-specific
ranking within the tag space. FolkRank, for example, leads to a personalized topic-specific
ranking. This can be used to recommend interesting users, resources and related tags to
increase the chance of ’serendiptious encounters’. As well it can be used to find latent com-
munities of interest because the top tags retrieved by FolkRank usually fall within one topic.
Marchetti et al. [31] address the problems of free tagging systems by suggesting semantic as-
sertions to tags. In SemKey, the user is supposed to choose a one of three relations between
a concept tag and a resource: hasAsTopic, hasAsKind, myOpinionIs. This way advanced
searching is enabled. In addition, they implemented a Wikipedia based sense disambiguation
module. The TAGMAS approach [32] on the other hand tries to ease the management and
search of fragmented personal bookmarks and tagged data stored in different platforms on
the web. They present an architecture to integrate and federated-ly search heterogeneous
data (model) into a FolkDesktop.

2.2 Opinion mining

Opinion mining in trademark product reviews is an important field where a lot of research have
been done. Dave et al. [33] present a method for automatically classifying reviews accord-
ing to the polarity of the expressed opinions, i.e. the tool labels reviews either positively or
negatively. They index opinion words and establish a scale of rating according to intensity of
words, word intensity is established by using machine learning techniques. Finally, to classify
a new review, they build an index reflecting the polarity of each sentence by counting identified
words.
In an article by Morinaga et al. [34], the authors explain how they verify the reputation of
targeted products by analyzing customers’ opinions. They start by seeking Web pages talk-

PHAROS: Techniques and Algorithms for Social Media Page 8 Version 1.0

ing about a product, e.g. a television; then they look for sentences which express opinions
in these websites, and finally they determine if the opinions are negative or positive. They
determine it by locating in reviews opinion words which were indexed previously in an opinion

dictionary .
Other articles present work closely related to the previous one e.g. Turney [35], which clas-
sifies reviews in two categories: recommended and not recommended, or Wilson et al. [36]
which categorize sentences according to polarity and strength of opinion, or Nasukawa et Yi
[37] which seek opinions on precise subjects in documents.

Two principal methods can thus be used to extract opinion from reviews; there include NLP
(Natural Language Processing) or Statistical machine learning techniques. Below we discuss
both NLP and statistical methods.

2.2.1 NLP shallow parsing

Liu et al. [38] describe a system which compares competitive products by using product re-
views left by the Internet users. The system, named Opinion Observer, finds features such
as pictures, battery, zoom size, etc. in order to explain the sentiment about digital cameras.
They designed a supervised pattern discovery method to automatically identify product fea-
tures from pros and cons in reviews. A language pattern contains a sequence of words and
can be instantiated in many ways: e.g. <verb> included <noun> [feature] <verb> is <adjec-

tive> stingy. From the multiple instantiations, they extract association rules of the type: <N1>

<N2> → [feature] to keep the relevant statistical pattern, and generate language patterns from
those rules: <N1> [feature] <N2>. They analyze the reviews with those patterns and compare
the opinion on each of these characteristics. A component decides the orientation of the ex-
tracted feature according to the adjectives extracted near the features. Finally, they classify
sentences as negative or positive by determining the dominant orientation of the opinion words
of the sentence. The result of the comparison between two products is given in the form of
diagram with features on X -coordinate and opinions polarity on Y -coordinate.

Opinion Observer is an example of a complete system based on the fine-grained analysis of
sentences and a process counting Sentiment signs (words, expressions, patterns). Like many
others, they need a Sentiment Dictionary with as many words or expressions as possible
yielding opinions. To build such a dictionary, different techniques are possible but they have all
the same first steps: manually creating a set of words and expressions carrying the sentiment
named; this set is called as the seed set, and is useful to find other words and expressions
yielding opinions; a third step classify words and expressions according to their semantic
orientation (positive, negative, but seldom neutral). In order to increase the initial word set,
Turney [35] proposes the following method: to find semantic orientation of not classified words
or expressions, they count the frequency of these words or expressions beside a word or
expression already classified and he defines the semantic orientation of words or expressions

PHAROS: Techniques and Algorithms for Social Media Page 9 Version 1.0

studied according to their neighbors. Each time an adverb or an adjective is encountered,
they extract pair of consecutive words:

• Adjective with noun,

• Adverb with adjective when they are not followed by a noun,

• Adjective with adjective when they are not followed by a noun,

• Noun with adjective when they are not followed by a noun,

• Adverb with verb.

The second extracted word allows confirmation of the polarity of the first adjective or adverb
by giving an outline of the context of the sentence. This method, counting co-occurrences with
words semantically oriented and manually selected, is also used by Yu and Hatzivassiloglou
[39] in order to determine which words are semantically oriented and the direction and strength
of their orientation. They have also tried this method by including pairs of adjectives into the
seed set.

A second method consists of using linguistic co-locations of words/word-groups with a similar
significance. To determine words sharing the same significance, Pereira et al. [40] and Lin
[41] propose two methods to search words with the same significance (synonyms) where the
meaning is unknown.

Another method to increase the seed set (described by Hatzivassiloglou and McKeown [42])
consists of using conjunctions between a word which semantic orientation is known and a
non-classified word. For example, if there is the conjunction “and” between two adjectives, we
can consider that the terms have a close signification. On the contrary, if there is the conjunc-
tion but between two adjectives, we can suppose that the two words have a different semantic
orientation.

One additional method to find semantic orientation of words uses WordNet (Miller et al. [43]).
In order to determine semantic orientation of a new word, Hu and Liu [44] use sets of syn-
onyms and antonyms present in WordNet to predict semantic orientation of adjectives. In
WordNet, words are organized in a tree (see Fig. 2.2.1). To determine polarity of a word,
they traverse the trees of synonyms and antonyms of this word and if they find a seed word in
the synonyms, they allocate the same class, but if they find seed word in the antonyms, they
allocate the opposite class. If they do not find any seed word, they remake the analysis with
synonyms and antonyms, and so on until finding a seed word.

This method has a potential error because words can have different meaning according to the
context and thus they can have synonyms not signifying the same meaning. For example, the
word like is a synonym love but in the sentence “It is like that”, it have not the same meaning.
This method finds a positive opinion in this sentence whereas such an opinion is actually not
expressed. However, using the same method after having linguistically processed the corpus
before (i.e. grammatical analysis) could be more effective. For the previous example, if the

PHAROS: Techniques and Algorithms for Social Media Page 10 Version 1.0

Figure 2.1: Tree of synonyms and antonyms in WordNet (full arrow = synonyms, dotted arrow
= antonyms)

seed word is like/VERB, we would not find opinion in the sentence It is like that.

To measure more precisely the strength of opinion expressed in a sentence, a possible method
is to extract adverbs which are associated with adjectives. Indeed, Benamara et al. [45] pro-
pose a classification of adverbs into five categories : adverbs of affirmation, adverbs of doubt,
adverbs of weak intensity, adverbs of strong intensity and adverbs which have a role of mini-
mizer. A system of attributing points according to the category of the adverb allows to calculate
strengths to adverb-adjective combinations. We have used this classification for our opinion
adverbs.

To discover a polarity (negative or positive) in a sentence, we can count the number of terms
with positive semantic orientation and negative semantic orientation; if there are more positive
terms, the sentence is declared positive, else it is declared negative, unless there are as many
positive as negative terms, in which case either sentence is declared neutral (Yu and Hatzi-
vassiloglou [46]). Additionally, the last term carrying opinion which might be used to determine
sentence polarity (Hu and Liu [44]). Otherwise, we can extract opinion one by one associated
with the feature to which relates the opinion (Wilson et al. [36], Hu and Liu [47]).

2.2.2 Machine Learning Techniques

Machine learning techniques have also been used for opinion mining. To quantify opinion from
product reviews, Pang et al. [48] show that machine learning techniques perform better than
counting methods used previously, with an accuracy of 83% in the polarity classification of
reviews. These systems aim to classify reviews into classes, e.g. positive/negative, including
the neutral class; alternatively, this can be considered a regression problem of predicting rates
from 0 to 5. Wilson et al. [36], according to the section below, prepare their data with an NLP
annotating tool describing the strength of opinion words, but to classify the reviews, they use

PHAROS: Techniques and Algorithms for Social Media Page 11 Version 1.0

machine learning techniques instead of simply counting the salient words. They test three
machine learning algorithms well-known within NLP field: BoosTexter (Shapire and Singer
[49]), Ripper (Cohen [50]) and SVMlight (Joachims [51]) on a corpus annotated by Wilson and
Wiebe [52]. They achieve significant improvements compared to previous research. Pang et
al. [48], who work on sentiment classification in movie reviews, use two other algorithms in
addition to Support Vector Machine algorithm: Naive Bayes classification and maximum en-
tropy classification.

Machine learning techniques can be used also to build the Sentiment Dictionary. Riloff and
Wiebe [53] is an example of such a usage. They focus on the bootstrapping process that
learns linguistically rich extraction patterns for subjective expressions. They show that it is
better to learn expressions because they are linguistically richer than individual words or fixed
phrases.

2.2.3 Combination of NLP and Machine Learning

Combining NLP shallow parsing and machine learning techniques appears to be the most ef-
fective solution to extract knowledge in connection with opinions in any corpus; this idea was
first presented by Turney and Littman [54]. They use an algorithm for unsupervised learning
of semantic orientation which creates association between seven positive words (good, nice,
excellent, positive, fortunate, correct and superior), seven negative words (bad, nasty, poor,
negative, unfortunate, wrong and inferior) and others words of a corpus. Nigam and Hurst
[55] have developed an automated system for detecting opinion about a topic of interest. They
use NLP techniques to detect expression yielding opinion and to put marks on the text near
each word (grammatical feature and + or − for positive or negative opinion). Then they use
machine learning techniques to classify documents according their opinion.
Hatzivassiloglou and McKeown [42] also use both NLP and Machine learning to exploit the
semantic orientation of adjectives. They use NLP techniques to extract adjectives from cor-
pus and they apply a clustering algorithm to classify adjective yielding opinion according their
polarity.

Although full comprehension of natural language text remains poor, the state-of-the-art in
Natural Language Processing techniques enriched by Machine Learning (e.g. for Sentiment
Dictionary construction), offer improved results in classifying the polarity of a textual content
expressing sentiment. For the majority of the papers, results reach an accuracy of 80% or
more in opinion prediction.

PHAROS: Techniques and Algorithms for Social Media Page 12 Version 1.0

2.3 Blog Analysis

According to Wikipedia3, blogs have been defined as a website where entries are written in
chronological order and commonly displayed in reverse chronological order. In essence, blogs
are a form of social media which is characterized by a self publishing nature. Proliferation of
Blogs is fueled in part by the fact that they are relatively easy to create and they allow users
to freely express themselves in many ways, artistically or even politically. In addition to self
expression, blogs have added new complexities and structures of social networks on top of
the existing web. Finally, from a sociological perspective, blogs in their totality represent the
wisdom of the masses that often cannot be explained or captured with traditional media. For
these reason, they are considered an interesting artefact of social media and will be examined
in this section. First, we discuss the state-of-the-art in blog analysis and then present ways
in which user profiles can be built from blogs. Finally we conclude with some directions and
open challenges related to blog sphere.

2.3.1 Overview of Blogs and public forums

A blog is a web page usually published using a blogging software, which annotates text with
timestamps. A typical anatomy of a blog/weblog includes:

Blog entry/post : indivisible unit of the blog page

Title : Descriptive words used to preface the post

Timestamp : time and date at which the post was written Author person who wrote the post

Permalink : identifier for each post on the blog page

Hyperlinks : links to external or internal web site or blogs

RSS : link to receive syndication of the blog site

Comment : reader / audience feedback on the content of the post

Annotation : such tags or classification with provide metadata describing the topic of the
post

Reader endorsement : such as dig or vote representing a readers preference for the content

Trackback : hyperlink to post writing previously in time used as a basis for seeding the current
post

Given their anatomy, blogs essentially induce networked structures on top of the existing web
and social media. In an effort to capture and study this social phenomenon, research on
several aspect of blogs is being conducted; these include: sentiment analysis, visualization,

link/structural, analysis, trend analysis, content analysis, groupware, authorial analysis , tag-

ging, communities , and to a limited extent - spam & diffusion. Most recently, micro-blogging is
growing and represents a form of lightweight blogging; such systems include Twitter4. Since

3�� ���� ������ �	
��� �� ��
�	�
4��� ��� ����
 ��	�

PHAROS: Techniques and Algorithms for Social Media Page 13 Version 1.0

en.wikipedia.org/wiki/Blog
www.twitter.com

our emphasis is on personalization, we investigate the state-of-the-art with respect to user
profiling using blog data.

2.3.2 Building user profiles from Blogs

In this section. we discuss: two types of information which can be acquired in order to build
user profiles from blogs: the first type discussed is explicit information based on self promotion
tagging, and endorsement. The second is implicit information based on co-occurrence asso-
ciations and blogger emotion. We present the strengths and weaknesses of each approach
and conclude with current challenges and open issues.

Explicit Information

Explicit information is knowledge which is supplied directly by users, for example by selecting
relevant topics, rating content or by completing a questionnaire. Typical examples in social
media include registration processes such as StudiVZ5, where the user is asked to select their
discipline from a list of available choices, or the registration to a syndication service, where the
user is asked to supply a set of interesting topics in order to receive news syndications. Explicit
information can be gathered from blogs based on self promotion tagging, and endorsement.

Endorsement : In endorsement based information, blog users express a liking for the con-
tent of others’ blogs. There are several ways in which this is done: the first is a blog roll where
users explicitly link blogs which they have read and suggest others to read as well. A profile
can be build from a blog roll and users with semantically similar or statistically similar blogs
can be used to support matching of like-minded users. Another form of endorsement is eprops

and rating. As depicted in the Fig. 2.2. users who read a blog can either give stars(ratings)
or eprops to express a preference for the content of the post. The granularity for these two
mechanisms are different. In the five-star system, the granularity is multi-valued – on a scale
of 1 to 5, whereas an eprop represents a unary granularity. Unary granularity represents the
fact that if a user endorses the post with an eprop, we know the content is preferred; on the
other hand, if the blog reader does not offer an eprop, we can not infer a preference for the
content. In Fig. 2.3. we can see users who supplied an eprop. In such systems, users provide
direct feedback about what blog post they liked.

Promotion in Blogs : In self promotion, blog writers associate tags with articles they wrote
and promote their blog and information about themselves via a blog aggregator, such as
Bumpzee6. With Bumpzee, users can promote information about themselves by creating

5��� �������� �����
6��� �������� ��	�

PHAROS: Techniques and Algorithms for Social Media Page 14 Version 1.0

www.studivz.net/
www.bumpzee.com

Figure 2.2: eprops Endorsement Figure 2.3: Example of "eprops"

communities, which people can join. This effectively allows common blogs to be aggregated
within the community. A key aspect is that users can specify which posts to include or exclude
based on the tags in the blog. A blog user can direct a system such as Bumpzee to only
add posts with the inline skating tag to the Inline Skating community. In this manner, users
explicitly select relevant topics describing the content of their post and make such information
available on a larger scale by promoting their blog content with a blog aggregator.

Blog-buzz.com – Similar to Digg7, but for blog posts. Blog-Buzz is a blogger driven site which
allows bloggers to share, discover and promote blog posts that they find interesting. This
site essentially makes the playing field level for bloggers since the competition to get Digg-
endorsed is high for bloggers as compared with other types of websites. Blog-buzz users
submit blog posts in a variety of categories and users Buzz blogs which they support as
interesting. The more buzzes a blog has, the more it has a chance of increasing visibility and
getting it to the main Blog-buzz page.

Social bookmarking : Yet another form of endorsement is the social bookmarking. Social
bookmarking is a system or network in which users store lists of Internet resources and blogs
that they find interesting. These lists can be accessible to the public by users of a specific
network or website. Other users with similar interests can view the link to the post by topic,
category, tags, or even randomly. Typical examples include Del.icio.us, Netvouz, or Blue Dot.
In Blue Dot, for example, links to a page are made part of a Blue Dot user profile.

In all these promotion systems, profile information is made available about the users based
the endorsement of others. Typically for a given user, all users who made the endorsement
can be seen – thereby creating a community of like-minded users based on endorsement. The
advantages of explicit information is that it offers a precise representation of the user, However,
the data can be subject to either: 1) deliberate misrepresentation, or 2) user bias because they
essentially represent a user’s self-evaluated perception of a particular item. Furthermore, it

7��� ����� ��	�

PHAROS: Techniques and Algorithms for Social Media Page 15 Version 1.0

www.digg.com

requires explicit action on the part of the user to record their preferences.

Mood : The reported mood of bloggers can be used to build profiles. Mood typically repre-
sents a finer granularity of a user – taking into account the current location and other ambient
factors such as music which they are currently listening to. Additionally, users can associate
emoticons with their posts to express addition mood or emotions not easily or automatically
detectable from the writing

Implicit Information

Implicit methods estimate and infer knowledge about the user by observing and tracking user
behavior and interaction with an information system. The actions of the user must be inter-
preted to impute a vote or preference. In contrast to explicit methods, implicit methods of
collecting data attempt to reduce the burden to the user by implicit tracking, tied typically into
the user/system interface. In this section, we discuss implicit information based on emotion
and co-occurrence association.

Sentiment : Profiling users based on blog sentiment is gaining in popularity. In this ap-
proach, the content of a blog post is used to determine if the writer or commenter holds a
positive, negative of neutral opinion regarding the post. When combined with topic analysis of
the content, a profile of a user and commenters can be built by representing the sentiment of
users for a given topic.

Association Co-occurrence : Based on the area of bibliographic citations, profiles of users
can be built from the bloggers whom they cite either using clipmarks or trackbacks. One
example of clipmarking is Clipmarks.com ,which essentially is a form of block quoting. This
allows a blog user to clip just the chosen bits of a post and insert them into their own blog as
quotes. Trackbacks allow user to include a link to another post in the content of their blog.
Associations allow us to build implicit profiles of the user by using the content, tag and profile
information of the cited bloggers as a representation for the citing blogger.

2.4 Recommendation Algorithms

Recommendations are a part of everyday life; when in doubt, we usually rely on external
knowledge and judgments of others to make informed decisions about a particular action.
There are many factors which may influence the decision making process of a person – this is
a complex task and the subject of much research. Automatic recommender systems Ideally,
a recommendation system should be able to track as many factors as possible. In the context

PHAROS: Techniques and Algorithms for Social Media Page 16 Version 1.0

of social media, recommender systems have an important role to play; for consumers, recom-
mendation of content with is likely to be well received based on past user experience can help
in discovering interesting but previously unknown sources of information (e.g. blog posts from
new bloggers) : for content providers, user feedback can be easily interpreted which can be
used to better identify target users and potential advertising opportunities.

Recommender systems have been built for entertainment content domains, such as movies,
music, book recommendation etc [56]. Generally speaking, the reason people could be inter-
ested in using a recommender system is that they have so many items to choose from – in
a limited period of time, that they cannot evaluate all the possible options. A recommender
system should be able to filter thru all this information and bring forward the most relevant ifor-
mation to the user. Intuitively, the recommendation problem can be split into two subproblems;
the first one is a prediction problem, and is about the estimation of ratings for a set of items
that a user has not seen. The second problem is to recommend a ranked list of N items – as-
suming that the system can predict ratings for yet unrated items. The most relevant problem is
the first one i.e. prediction. Once the system can estimate items into a totally ordered set, the
recommendation problem is as simple as listing the first N items with the highest estimated
value.

There are many approaches to solve the recommendation problem as stated above. One
approach is that the system provides informed guesses, based on ratings that other users
have provided, as well the current user’s ratings. This approximation is called collaborative

filtering. Another approach is that the system collects information describing the items and
then, based on the user’s preferences, the system is able to predict which items the user will
like. This approach is known as content-based filtering, as it does not rely on other users’
ratings but on the description of the items. Another approach is demographic filtering, that
stereotypes the kind of users that like a certain item. Finally, there is also a method that
combines some of the previous approaches; it is fittingly called the hybrid approach. However,
the common aspect of all these methods is that a prediction problem needs to be solved.

The prediction problem can be formalized as follows [57]: Let U = {u1, u2, . . . um} be the
set of all users, and let I = {i1, i2, . . . in} be the set of all possible items that can be recom-
mended.

Each user ui has a list of items Iui
. This list represents the items that the user has expressed

his interests8. Note that Iui
⊆ I, and it is possible that Iui

be empty9, Iui
= ∅ . Then, the

function, Pa,j is the predicted likeliness of item ij for the active user ua, such as ij /∈ Iui
.

The prediction problem is reduced to creating a list of N items, Ir ⊂ I, that the user will like
the most (i.e the ones with higher Pa,j value). The recommended list cannot contain items
from the already specified user ratings, i.e. Ir ∩ Iui

= ∅.

The space I of possible items can be very large, and similarly, the user space U , can also be
enormous. In recommender systems, the output of a prediction function is usually numerical
e.g. r ∈= 1..D. User ratings are triplets (u, i, r) where r is the value assigned – explicit or

8Note that these information can also be implicitly assumed from previously describe methods like opinion anal-
ysis.

9Specially when the user creates an account to a recommender system

PHAROS: Techniques and Algorithms for Social Media Page 17 Version 1.0

implicitly – by the user u to a particular item i.

2.4.1 Collaborative filtering

The main idea behind collaborative filtering (CF) is that the user gives feedback to the system,
so the system can provide informed guesses, based on ratings that other users have provided.
The more feedback the user gives, the easier it is for the system to return decisive recommen-
dations. The first system that implemented the collaborative filtering method, in 1992, was
the Tapestry Project at Xerox PARC [58]. The project coined the term collaborative filtering .
Other early systems were: a music recommender named Ringo ([59], [60]), and GroupLens,
a system for rating USENET articles [61]. A compilation of other systems from this early time
period can be found in [62].

CF methods work by building a matrix of users’ preferences (or ratings) for items. Each row
represents a user profile, whereas the columns are items. The value Ru,i is the rating of the
user ui for the item ij .

Figure 2.4: Collaborative Filtering: the task of prediction is equivalent to filling missing entries
of the user-item matrix

Figure 2.4 depicts the matrix of user-item ratings. The predicted rating value of item ij , for the
active user ua, Pa,j , can be computed as the mean of the ratings’ values of users similar to ua.
This technique allows to solve the user profile–item matching problem. Equation 2.1 shows
the predicted rating score of item ij , for user ua. R̄a is the average rating of user ua.

Pa,j = R̄a +
∑

u∈Neighbours(ua)

sim(ua, u)(Ru,j − R̄u) (2.1)

This approach is known as User-based or Memory–based Collaborative filtering algorithms.
Yet, to predict Pa,j , the algorithm needs to know beforehand the set of users similar (i.e neigh-

PHAROS: Techniques and Algorithms for Social Media Page 18 Version 1.0

Figure 2.5: Item-Item Collaborative Filtering

bors) to the active user, ua, and how similar they are (sim(ua, u)). This is analogous to solve
the user profile matching problem. The most common approaches to find the neighbors of
the active user are cosine similarity (see equation 2.2), K–Nearest Neighbours and clustering
based on stereotypes [63].

Item-item Based Collaborative Filtering

Ihe item-based method is based on item similarity rather than user–user similarity. This
method looks into the set of items that a user has rated, and computes the similarity among
the target item to decide whether it is worth to recommend it to the user or not.

Figure 2.5 depicts the co–rated items from different users. In this case, it shows the similarity
between items ij and ik. Note that only users u2 and ui are taken into account, but um−1

is not because it has not rated both items. The first step is to obtain the similarity between
the two items ij and ik. This can be achieved by using cosine similarity, correlation–based
similarity, or adjusted cosine similarity methods [57]. Let the set of users who rated i and j
be denoted by U , and Ru,i denotes the rating of user u on item i. Equation 2.2 shows the
definition of the cosine similarity:

sim(i, j) = cos(~i,~j) =
~i ·~j

‖i‖ ∗ ‖j‖ =

∑

u∈U Ru,iRu,j
√

∑

u∈U R2
u,i

√

∑

u∈U R2
u,j

(2.2)

However, for the item-based similarity, the cosine similarity does not take into account the
differences in rating scale between different users. The adjusted cosine similarity (equation
2.3) makes use of user average rating from each co–rated pair, and copes with the limitation
of cosine similarity. R̄u is the average rating of the u–th user:

PHAROS: Techniques and Algorithms for Social Media Page 19 Version 1.0

sim(i, j) =

∑

u∈U (Ru,i − R̄u)(Ru,j − R̄u)
√

∑

u∈U (Ru,i − R̄u)2
√

∑

u∈U (Ru,j − R̄u)2
(2.3)

Correlation–based similarity commonly uses the Pearson− r correlation coefficient. The cor-
relation between two variables reflects the degree to which the variables are related. Equation
2.4 defines the correlation similarity. Note that this measurement is done only over the items
commonly rated by two users. R̄i is the average rating of the i–th item:

sim(i, j) =
Cov(i, j)

σiσj
=

∑

u∈U (Ru,i − R̄i)(Ru,j − R̄j)
√

∑

u∈U(Ru,i − R̄i)2
√

∑

u∈U (Ru,j − R̄j)2
(2.4)

Once the similarity among items has been computed, the next step is to predict to the target
user a value for the active item. A common way is to capture how the user rates items similar
to the active item. This can be done by computing the sum of the user’s ratings – only for the
items similar to the active item – weighted by the item similarity.

2.5 Recommendation and Latent Semantic Analysis

In age of information overload, it has become important to find the most relevant information
for an information need. Once the subset of relevant information has been found, the problem
of presenting these results to the user still exists. Approaches like PageRank and the success
of Google have proved that Ranking is an important part of any information filtering solution.
In this section, we explore the use of Latent semantic indexing for ranking data. The essential
assumption is that data is multi-dimensional, i.e. each record has several variables (e.g. one
variable for every word observed in the entire text corpus), and this data is succinctly repre-
sented as a matrix. Generalizations have been made to collaborative data (user votes, user
tags) as well. We envision a scenario where user preferences over a number of seemingly
dis-similar items are available; the benefit of using LSI is that implicit user preferences can be
discovered

Latent Semantic Analysis (LSA) [64] was a hot topic for during last decade, and continues to
incite interest [65]. It involves performing Singular Value Decomposition (SVD) on a matrix
representing text documents in a Vector Space Model. The benefits of LSA were discovering
polysemy and hynonemy, while limiting the dimensionality of text indices to a fraction of the
original index size. In one of the pioneering works on SVD,10 [66] the authors compared it
to a Semi-Discrete Decomposition (SDD). This algorithm compresses the original matrix by
order of magnitude, but the decomposition itself becomes two orders of magnitude slower
than SVD.

One of the first ideas for improving LSA’s speed was outlined in [67]. The random projection

10As we are interested in SVD mainly as in the main LSA mechanism, we will use terms LSA and SVD as synonyms

PHAROS: Techniques and Algorithms for Social Media Page 20 Version 1.0

was suggested as a pre-processing step before actual SVD computation. Such a projection
should preserve the matrix mostly rank unchanged, but can reduce its size making the follow-
ing SVD much faster. Later, in another work [68], the random projection was actually tested
on the image and text data. Experimental results show that the quality is close to that of
LSI, while the computation costs are many times smaller. It was suggested that LSA can be
used not only as a pre-processing step but also a noise-reduction method on its own if the
computational costs are crucial.

Following the same intuition, a linear time version of approximate SVD was proposed in [69,
70] and later extended in [71]. It is based on a randomized algorithm, which picks a number of
columns from original matrix w.r.t. specific probability distribution. The resulting sample matrix
is scaled and used for approximation of SVD. In subsequent work [72, 73], researchers tested
this method on image data and it performed at least order of magnitude faster than a normal
SVD, with an acceptable approximation error. Some low-level details on an experimental
prototype can be also found in [74].

One of the most relevant experimental evaluations has been done in [75]. This work is also
using the idea from [69] of SVD approximated from a sample, but testing it on a TREC collec-
tion of Associated Press news articles. About 80, 000 documents were indexed using different
sampling strategies, about 10% of the matrix has been sampled with around 0.13% of non-
zero values. The most striking result is that none of the SVD versions performed consistently
better than the usual Vector Space Model (VSM). This effect is explained as a casual property
of the provided queries. Among various versions of SVD used, the vaiation using weighted
sampling showed the best improvement in the experiments, while on average it was outper-
formed by uniform sampling. Interestingly, the approximation error is not transformed linearly
into the precision degradation and uniform sampling strategy on average outperform exact
SVD. It would be interesting to perform futher investigation on this problem.

One of the few large-scale applications for LSI is presented in [76]. The paper addresses a
problem of query routing and document retrieval in a large peer-to-peer network. Yet again, the
idea of reducing the input matrix for SVD is explored, but this time a specific domain knowledge
is used. In a query routing task the documents from the similar peers can be aggregated into
large documents and the total number of columns in the final matrix is reduced. In addition,
the entries with low weights are discarded. The SVD on a resulting matrix is several orders of
magnitude more efficient. Among other observations authors note that proper normalization
of terms and documents almost double recall, besides, LSI serves as a natural document
clustering. Unfortunately, the retrieval quality of LSI is still inferior in comparison to VSM-
based Okapi model.

Another work [77] presents an efficient method to compute SVD of a product of two matrices.
It improves the speed of SVD computation directly on a product matrix and shows an easy way
to extend this method to product of multiple matrices. Authors note that the algorithm is based
on Jacobi-like methods, which have moderately higher complexity than QR methods. This
algorithm was successfully applied in [78] for the parallel SVD computation in a distributed
network. The latter paper provides some interesting insights into the implementation-level
details. A detailed distributed architecture for the SVD computation on a large cluster of ma-

PHAROS: Techniques and Algorithms for Social Media Page 21 Version 1.0

chines has been presented in [79]. The final goal is to speed up the computation by moving
parts of it on a hardware level.

In one of the recent papers [80], a new problem statement was presented for the SVD applica-
tion to the classification tasks. The main idea of the method is to change representation of the
data samples from vectors to small matrices. Therefore, instead of a single large matrix one
should perform low-rank approximation on a large set of small matrices. The classification
quality of new algorithm is better than of original SVD while speed is about 10 times higher.

A good overview of the SVD-based classifiers from Netflix11 competition is presented in [81].
The paper contains interesting comparison of different methods with respect to their accuracy
and speed convergence. Hints on parameters which can speed up the convergence are also
provided.

A major motivation for our work is provided by the recent paper [82]. Variable LSI is a new
modification of SVD approximation which minimizes approximation error w.r.t. specific query
distribution. Experiments show that the same approximation quality can be achieved using ten
times less underlying concepts. This might be an interesting direction to explore, modifying
original matrix with the user-specific term distributions. We explore this idea in more detail in
Chapter 4.

2.6 Conclusions

In this chapter, we have described a body of previous work relating to Social Media and tech-
niques for analyzing it. While several other works can be described here, we have limited
ourselves to the most significant and relevant ones. In the next chapter, we will look at new
algorithms for exploiting social media.

11��� ���������
��� ��	�

PHAROS: Techniques and Algorithms for Social Media Page 22 Version 1.0

www.netflixprize.com

3 Algorithms For Creating User Profiles

A user profile can be defined as knowledge about the user, obtained either explicitly or im-
plicitly, that is used by a system to improve the interaction between the system and the user.
Attempts to model users has been long sought and are important, in order to evaluate the rele-
vance of data items according to the user profile and attempt to deliver relevant, personalized
information. Moreover, when addressing the issue of information overload, the application of
user profiles is a crucial and established practice.

In the previous chapter, we have described a body of work relevant to Social Media. With an
depth knowledge of the sate-of-the-art, the PHAROS consortium has performed innovation
research improving on the status quo; we present below novel approaches and techniques
to exploit social media for creating user profiles. Most of the presented work has additional
experimental support and has been published in academic conferences in the recent month.
We start with Collaborative Tagging (multiple approaches), followed by Blog diffusion and
finally sentiment analysis from user generated content.

3.1 Creating A User Profile By Analyzing User’s Tags

Users collect and manage various kinds of resources on the Internet and many applications
rely on tags for supporting the management of resources. As can be seen from the analysis
reported in the Chapter 2, tags do not only tell something about the resources but they also
tell about the person who made the tags: the person is likely to store resources that he or
she finds interesting so they reflect the person’s interest and are therefore a good source for
an interest profile. What is good about tags is that they benefit the user directly, which is an
incentive to make them, thereby producing data for the profile without any extra work. Our
vision is that the user indicates which services and userids can be used by an application in
order to harvest the user’s tags, and these are then processed into a personal profile. The
profile is available to the user and the user is given an opportunity to modify the profile. The
profile can be used for ranking search results, for recommending content, supporting browsing
and linking to other users with similar interests.

Tags and tagging can be analyzed from different viewpoints. Our purpose here is to use tags
as indicators of personal interests and as a source for creating an interest profile. Tags create
networks between people if and when people tag the same resources and/or use same tags.
Also, tags create information about people’s views on the actual resource and how interesting
and relevant they find them: however, in this study, we do not address these issues.

PHAROS: Techniques and Algorithms for Social Media Page 23 Version 1.0

3.1.1 Analysis Of User Tags

Like already mentioned, tags are utilized in different types of applications. del.icio.us made
tagging popular; there tags are used to manage and share bookmarks. The application lets
users store any bookmarks they want, and this way it makes a good source of information
relating to a person’s interests. We gathered tagging data of 1035 users from del.icio.us
to test the creation of user profile from user’s tags. The dataset consists of the 100 latest
tagged resources and their tags as well as the list of all the tags that the users in the dataset
have created and how many times they have been used. The varied nature of resources
bookmarked and tagged at del.icio.us makes it a good source for analyzing user interests.
The methods for analyzing tags can be utilized in tags created in other services as well (e.g.
Flickr!).

Characterizing tags There are different alternatives to analyze tags; single tags, tag com-
binations in connection to a single resource and tag grouping based on their meaning (topic,
opinion, and resource type). Resources that are referenced can be analyzed in combination
with rating information and opinions. The tags of other users and other metadata can be used
as additional information source regarding the linked resource. In the state-of-the-art (see
Sec. 2.1), several research papers that report studies about the type of tags people use were
presented. Different types of tags can be used for different purposes when analyzing a user’s
interests or describing resources. Topics (like travel, semanticweb, cat, cars) can be used for
analyzing user’s interests as well as characteristics of tagged resource. Type of referenced
resources (like blog, wiki, video, music) can be utilized as information of user’s preferred re-
source types. Proper names (like person, company, product, event, location (Nokia, BBC,
Oslo) can be used as an indication of user’s interests as well. Additional information may be
obtained from the web to reason a user’s interests further. For example, from Nokia company
profile, we can harvest information about their business areas; mobile devices, mobile net-
works which can also indicate the interests of a user who has used the tag Nokia. Subjective
tags (like interesting, great, +++) as well as toDo tags (like toRead, toPrint) can be used to-
gether with other tags to confirm the user’s interest areas. Self reference type of tags (like
Mystuff, mywork) can be used by analyzing the linked resources, which give indication of the
user’s own activities. These initial tag categories can be condensed into three main ones that
are the most relevant from a user profile perspective. These categories are user’s interest,
opinion and type of resource. The category of user’s interest combines topic, proper name
and self-reference categories together. Opinion is a combination of subjective tags and toDo
tags categories.

Assumptions in our approach: Our initial intention was to utilize these three categories in
creating a user profile. However, the first analysis of our tagging data showed that Opinion
alone does not bring much new information into creating a user profile because the opinion
is related to the resource. The user is probably interested in a topic of the resource although
s/he is not postively opinionated about particular tagged resource of that topic. Opinion tags
are more relevant when analyzing the tagged resource. Another initial idea was also to give

PHAROS: Techniques and Algorithms for Social Media Page 24 Version 1.0

more weight to the tags that were used together with toDo types of tags, because they express
user’s intended future activities. However, not all users use this type of tags and for those who
did, the influence to the total tag usage frequency was marginal. So, at this stage, we have
concentrated on the user’s interest category. Tags describing the type of resource can be
utilized to analyze user preferred sources (see chapter user preferred sites for more details)
We believe that categorizing tags helps in analyzing the masses of very heterogeneous tags.
We will continue working with this aspect in task 2.1.2, not only for creating a user profile out
of tags but also for utilizing user created metadata for describing resources.

3.1.2 Tagging Habits

Tagging behaviour and practices vary a lot between people, because tagging is made mostly
for personal use, not for common good. There are several characteristics that can be used
for describing and comparing users’ tagging habits. These characteristics are the number of
different tags of each user, the total number of used tags, the number of tagged resources
as well as the number of tags assigned to a resource in average. Also, statistics about the
lexical analysis of each user’s tags may reveal something about a user’s tagging habits: how
many of the user’s tags are nouns, adjectives etc. and how much there are recognized words
compared to unrecognized words. Users have different habits to use tags concurrently. The
general habit is to tag from general tags to more detailed tags /1/; some users use a lot of
synonyms or different spelling variants (plural, singular, acronyms) of a word or concept. As
already mentioned, users also have different ways of combining words. There are tags in
which each word is separated by a certain character, by a hyphen, by an underscore, by
a slash or by a space, two separate tags can always be used together to indicate specific
meaning. Below there are some statistics about the tagging habits of del.icio.us users in our
dataset (1035 users, the latest 100 tagged resources / user):

• 1,55% of the users have over 1000 tags, 2,2% had over 900 tags, 14,2% had over 500
tags, 50% had over 178 tags and 5,1% had less then 10 tags. The users which have
very few tags are not used for analyses.

• The average number of tags that users assign to a resource (bookmark) was 3.1 ± 2.4
tags/resource, the maximum was 20,5 tags/resource.

• The average number of total number of tags of a user was 273 ± 234 tags/user and the
maximum was 2046 tags/ user.

As a first step in analyzing tagging data, we have compared the results of two users who have
different tagging habits. One of them is a user who has approximately the average number
of total tags as well as an average number of tags per resource. The other one is a heavy
user with plenty of tags and tag co-occurrences. The heavy user also makes a lot of different
spelling variants of the same words. Results of these experiments showed that the same
parameters used for tagging data of both users do not produce satisfactory results.

PHAROS: Techniques and Algorithms for Social Media Page 25 Version 1.0

Conclusion and an assumption in our approach: Users’ tagging habits must be taken into
account in the parameters to be used in the tag analysis. This influences the selection of the
most relevant tag usage frequencies. The impacted method for determining a threshold for
selected user’s tags is described in Section 3.1.4.

3.1.3 Time Sensitivity

In our del.icio.us dataset, the number of tagged resources is limited to the 100 latest tagged
resources and their associated tags. The dataset also includes the list of all the tags the user
has created and how many times each tag has been used. We can assume that each user’s
latest tags describe their current interest. The comparison of the recent tag usage to the total
tag usage gives some hints about the long term interests as well as increasing and decreasing
interests of the user.

Conclusion and an assumption in our approach: The list of tags describing users’ interest
is influenced both by the recent and total tag usage, but the most recently used tags have
more influence on the profile. At the moment, this has been taken into account as optional
feature. The comparison between an initial profile that has been created based on user’s most
recent tags and a profile based on user’s total tags is made. The tags that are not listed in
the initial profile, but are listed in the profile made based on all tags of the user are potential
candidates to be included in a user’s profile. These tags could be shown to the user and
the user could then decide whether he or she wants to include them into his or her interest
profile as well. Our use scenario is that the user can indicate several services that can be
used to harvest user’s tags. As mentioned earlier, the data availability depends on the APIs
of the service. In most services not all of the user’s data is available. In case of del.icio.us
we have the data about the recent tags of the user as well as some information about all tags
of the user. Because this might not be the case in every service we wanted to keep mixing
of recent and all tagging data very simple at this stage of development. The approach will be
reconsidered when we have analyzed the available tagging data of different services.

3.1.4 Tag Usage Frequency

Tag usage frequency indicates the user’s interest of the topic. We can assume that, it is
unlikely that rarely used tags relate to the core interests of the user. The absolute tag us-
age frequency is the total amount tags used by a user. Relative tag usage frequency is the
percentage of a tag usage relative to the total frequencies of all tags. Relative frequencies
describe the probability of the occurrence of a tag, which this information can be utilized in
statistics analysis for creating a statistical distribution of the used tags.

Conclusion and an assumption in our approach: The interests of the user are ranked with
the help of tag usage frequencies. The more a tag is used, the more interested the user is in

PHAROS: Techniques and Algorithms for Social Media Page 26 Version 1.0

the topic. The original tag usage frequency list of a user is modified based on lexical and co-
occurrence analysis of user’s tags. Optionally users are given an opportunity to modify their
profile. This can be based on a compared result of analyzed profiles based on user’s recent
and total tags and the most frequently used unrecognized tags of a user as well as freely
selectable tags of a user. There are several alternatives in selecting the criteria for ranking
tags into a profile. The tags can be delimited by criteria like

• select tags that have been used at least x times,

• select top x tags,

◦ Where x is influenced by tagging habits of the user. (If user has a lot of tags x is
bigger than with user who has less tags.)

• based on a distribution

Our first idea was just to use top x tags as criteria to select tags for a user profile. Manual
inspection of user’s tags showed that selecting approximately the 25 most used tags would
describe user’s top interests. One limitation of this approach is that it selects top tags in-
dependent of the fact how many times a tag is used, also leaving out tags that have been
used as much as the last selected tag. Because of users’ different tagging habits, using this
as criteria gives quite varying results, selecting less important tags of those users who have
fewer tags and two few tags for those who have a lot of tags. So instead of selecting top x
tags for a profile, our approach is to use a relative cumulative tag usage frequency distribu-
tion to determine criteria which tags are included into profile. Relative cumulative tag usage
frequency is summarized cumulatively from relative tag usage frequencies when the tags are
ordered based on their frequency (see Table 3.1). Relative cumulative tag frequency is used
for determining the threshold (x) that is used for selecting tags for a user profile. The tags that
the user has used at least x times is used as criteria for selecting tags for a user profile. 30
% of the user’s most used tags were used as the cumulative relative tag usage frequency for
determining the threshold. By selecting approximately 30 % of the most used tags, we are se-
lecting only the tags belonging to highly or medium used category of tags. If only highly used
tags are wanted to be a part of a profile, a percentage should be lower. Also the result of lexi-
cal analysis influences for a selected percentage, because of a high number of unrecognised
tags. The percentage can be customised. The minimum threshold for all users is that tags
are used at least 2 times. So even if the threshold (calculated based on relative cumulative
frequency) would indicate to select all the tags of the user, only the tags that have been used
more than once are selected. The tags that have been used only once do not indicate a the
high interest for the topic. Threshold (x) = tags that a user has used at least x times. The
method of selecting threshold for a user is visualized in Fig. 3.1.

3.1.5 Tag Co-occurrence Usage Frequency

In analyzing the tag co-occurrence, absolute and relative tag frequencies are calculated the
same way as in the tag usage frequency (see Sec. 3.1.4). The absolute tag co-occurrence

PHAROS: Techniques and Algorithms for Social Media Page 27 Version 1.0

Figure 3.1: An example of how cumulative tag usage frequency is used for determining a
threshold for selecting a user’s tags for a profile. 30 % is used as criteria corre-
sponding to threshold 4. Tags that have been used at least 4 times are selected
for a user’s profile

usage frequency is the total amount of co-occurrences. The relative tag co-occurrence usage
frequency is the percentage frequency of the co-occurring set of tags relative to the sum of
frequencies of all co-occurrences. The most used tags are often general tags (like web), not
describing the user’s viewpoint to the topic. That is one reason why tag co-occurrences are
interesting when reasoning users’ interests. By taking both the single tag usage frequencies
and the co-occurrence usage frequencies into account, users’ interests can be better evalu-
ated. Relative tag and tag co-occurrence usage frequencies which describe the probability of
the occurrences can be used in statistical analysis in order to determine the relevancy of the
co-occurrences. This is useful in evaluating the relevance of co-occurring tag sets which have
the same co-occurrence frequency. This is not a problem with users who have few tags per
resource, but may become more relevant with users who have a great number of tags per re-
source. Another parameter relating to the co-occurrences of tags is how often tags are used,
together compared to the total usage of the tag as percentage. If this percentage is 100%, the
tag is always used with the determined tag. This approach needs a restriction that the tag is
used at least x times (e.g. >2), because if the tag is used only once, its percentage with its
co-tags is 100 %. The restriction could be varied based on the tagging habits of the user. This
method could be utilised for analysing unrecognised words and for example to minimise the
influence of spelling variants of the same tag. When two separate words have always been
used together, it indicates that these words have a specific meaning together and in some
cases it might be possible to treat these words as one word.

PHAROS: Techniques and Algorithms for Social Media Page 28 Version 1.0

Conclusion and an assumption in our approach: The co-occurrences of tags indicate in
which aspects the user is interested in a certain topic. The tags selected for a profile are
complemented with the information of their most co-occurring tags. Co-occurrences can be
restricted by including only the co-occurrences that have been used at least x times together.
One drawback of our dataset is that tag co-occurrence data for all of a user’s tags are not
available. So a comparison between recent tag co-occurrences and all tag co-occurrences
of a user can not been made. Our use case scenario is that users can give their user-name
to different social media services and the tagging data can be gathered through APIs and
combined to the profile. The problem is that official APIs of different services allows us to
gather different kind of data and not always all data we are interested in. Despite of these
restrictions the algorithm should provide a best approximation of user’s profile although the
available dataset may not be complete. Our experiments have been made only with a dataset
from del.icio.us, but later on it would be interesting to test also tagging data of other datasets
e.g. Flickr!. Differences in datasets makes automatic creation of user’s profile based on user’s
tags even more challenging.

3.1.6 Lexical Analysis

The lexical class of the tag can give some insight into the importance of the tag. The most
important part in determining user’s interests would be the tags describing the topic. The
topics are mostly nouns. Adjectives on the other hand express an opinion of the user and are
relevant when analyzing the tagged resource, but do not have so much relevance in creating
the user profile because users usually bookmark resources that are of interest to them. For
doing the lexical analysis we used the MIT Java Wordnet Interface to categorize the used tags.
This library includes a stemmer, which had to be used before analyzing lexical classification
of the word to get any reasonable results. Lexical analysis is a language dependent. We have
analyzed English tags and used above mentioned tools for analysis. For different languages
tools like stemmers and dictionaries a version developed for the particular language need to
be used. Also, the way of creating tags and compound tags might vary between languages.
As tags are often formed by word combinations, such as socialmedia, a lot of the tags were
not recognized as real words and could therefore not be mapped completely or at all. All of
the tags were also not in English and were therefore excluded from further analysis.

Another problem with the lexical analysis was that many words have more than one potential
meaning in different categories (noun, adjective, and verb). In our del.icio.us case, it can be
assumed that people mostly use nouns.

Conclusion and an assumption in our approach: For analyzing user interests our focus is
on tags that have recognized lexical class. Lexical analysis is used for cleaning user’s tags.
A method for analyzing the tags (like blog, blogs, blogging) that have the same word root was
developed. The result of the analysis can be utilized to create additional connections between
tags enhancing search for different spelling variants of a tag. We assume that all of these
tags describe the same interest, although from tagged resource point of view they may have a

PHAROS: Techniques and Algorithms for Social Media Page 29 Version 1.0

different connotation. Because the number of unrecognized words is quite high, selecting only
tags that have recognized lexical class restricts the tags of the users quite a lot, especially with
users who have few tags. An additional analysis is needed for the unrecognized words. This
includes the analysis of word combinations and different ways of writing the same words (like
social_media, socialmedia, socialMedia). Lexical analysis could be used also for determining
synonyms of the words, or words that belong to same category based on their meaning. A
deeper semantic analysis of the tags would help in ranking the search results based on users’
interests. One problem is that although we make recognition of word combinations better,
not all new compound words like business model or social networking are found in Wordnet.
One approach could be to use DBpedia (���� ������ �!" #$%&� or Yago to check whether
a description of a term can be found in these databases and also utilise them to get more
information about the semantic meaning of a tag.

User-preferred sites

The dataset can be used also for analysing the user-preferred sites. This is expressed as
the URL of a site and the number of bookmarked resources per site (at least >1). This gives
us information about the user’s preferred sources for certain subject areas. By analysing the
tags that belong to category "type of resource" (like music, book, blog, video, movie, song) we
can harvest user’s preferred sites for a certain type of resource like for music or books. Co-
occurring tags can reveal what kind of music or books the user is interested in when looking
for material in this site. For example, the user might be interested to search books relating to
his/her profession from one site and books for entertainment from another site.

Conclusion and an assumption in our approach: At this stage we have concentrated on
harvesting user’s interests rather than user-preferred sites, but this is one interesting case
where tag categories can be utilized. In Pharos showcases, it was mentioned that users can
express their preferred sources. This is one opportunity to increase this type of information
automatically. Algorithm 1 describes the main and optional steps in our profile creation algo-
rithm.

The optional steps need to be considered whether they are taken to the profile creation or not.
They are functionalities that effects also for the user interfaces, how the profile is visualized to
user and how user can make modifications.

Related research

Tagging is a relatively new phenomenon, but there is some related research to ours.

In [24], tags were used to create a user profile. The approach was built on two tag features: tag
co-occurrence and time sensitivity, and only resources that have at least two tags are included
in the analysis. The co-occurrence was considered important, because tag combinations

PHAROS: Techniques and Algorithms for Social Media Page 30 Version 1.0

http://dbpedia.org/

provide more information about the user for two reasons; first, more than one word may be
needed to describe a concept and there may be different viewpoints or aspects to a topic. By
putting more emphasis on recent tags, it is possible to find out about new and recent interests.
Characterization of users’ tags and analysis of tagging systems are researched in papers
[3, 7, 22]. We have used these studies are as a basis for seeing what kind of characteristics
there are in tags, and how they can be categories relating to creating a user profile. These
papers are relevant also when the support for tagging within the Pharos system is considered.
In [10], research is reported where Flickr! tags are converted into RDF descriptions. The
idea is to extract the semantic meaning of tags used for describing a given photo and build a
pertinent RDF annotation for this photo. The developed method is based on linguistic rules
and natural language treatment as well as on integrating some human knowledge to be able
to provide semantic description for pictures from tags. Our approach differs from the earlier
work by utilizing both single tags and tag combinations and by connecting lexical analysis to
the tags. This way we are able to better pinpoint each user’s the interest areas and to create a
profile that is easy for the user to evaluate. Our algorithm also takes into account the tagging
habits in order to adapt to the very varying tagging habits.

3.1.7 Algorithm and Evaluation Result

The result is an algorithm based on the above-mentioned analysis to create a personal profile.
The user profile includes user’s interests defined as collection of tags and their co-occurring
tags with corresponding information about the tag and tag co-occurrence usage frequencies.
The formal definition of a profile of a user U :

Profile U = < Tagi, Fi, RFi, < CoTj, CFj >> where

• Tagi = user’s tag

• Fi = absolute tag usage frequency = number of times user (U) has used Tagi

• RFi = relative tag usage frequency % = 100 × Fi /Total frequency of all the user’s tags

• CoTj = co-occurred tag of Tagi

• CFj = absolute tag usage frequency for co-occurred tag CoTj

The result could be expressed also as a personal ontology. There are several interesting on-
tologies relating to tags that could be utilised to some extent. The SCOT-ontology 1 describes
the result of user’s tagging activity containing same kind of information that we have. SKOS 2

provides a model for expressing folksonomies and makes it possible to expand search terms
and the meaning of the tags describing the user’s interest (e.g preLabel, altLabel; spoken lan-
guage, misspelling, synonyms, association, related, broader, narrower, isSubjectOf). In Fig.
3.2, there is an example of how these ontologies could be used as part of the user profile.
This could be linked as part of the FOAF profile of a user. Output format need to be defined
as part of the user model and remains a part of future work.

1'��� (����	�)�
	*��� �	
��+�,-
2'��� (����� ��. �	
��/001�0/��� 	��

PHAROS: Techniques and Algorithms for Social Media Page 31 Version 1.0

http://scot-project.org/?p=5
http://www.w3.org/2004/02/skos/

Algorithm 1 Create User profile based on Tags
1: Count tag usage frequencies (absolute and relative frequency as well as relative cumu-

lative tag usage frequency) for recognized tags, for tags that are identified belonging to
some lexical class.

2: Use relative cumulative tag usage frequency (30 %) for determining the threshold (x) that
is used for selecting tags for a user profile. The tags that the user has used at least x
times is used as criteria for selecting tags for a user profile. (The method is described in
chapter "Tag usage frequency").

3: Select tags that have been used at least x times for a profile and list them along with
information about the tag, possible word roots for the tag, tag usage frequency and relative
tag usage frequency.

4: Count the tag co-occurrence frequencies for selected tags. List the selected tags along
with the co-occurred tags, frequencies and corresponding tag information for the co-
occurring tags. Only list co-occurred tags that have a recognized lexical class and that
have been used at least two times together.

5: Handling of the most used unrecognized tags {Optional steps}
6: Count tag usage frequencies (absolute and relative frequency as well as relative cumu-

lative tag frequency) for unrecognized tags. Repeat steps 2 and 3. -> The most used
unrecognized tags will be shown to user. The user can modify and include them in the
profile if they are relevant.

7: Repeat steps 1 to 3 for total tags of the user.
8: Compare result set with one created in step 3 and select only tags that are not found in

that previous result set. -> Tags will be shown to user and user can include them in the
profile if they are still core interest of a user.

9: Analyze the user preferred sites

Output: Return User Profile

Tag Tag usage
frequency

Relative tag usage
frequency %

Cumulative relative
tag usage frequency
%

businessModels 7 2.8926 2.8926

MySpace 6 2.4793 5.3719

advertising 6 2.4793 7.8512

socialnetworking 6 2.4793 10.3305

wikipedia 6 2.4793 12.8098

2check 5 2.0661 14.8759

web2.0 5 2.0661 16.942

semanticWeb 4 1.6529 18.5949

search 4 1.6529 20.2478

PHAROS: Techniques and Algorithms for Social Media Page 32 Version 1.0

Google 4 1.6529 21.9007

++ 4 1.6529 23.5536

ep2007 4 1.6529 25.2065

screenscraping 4 1.6529 26.8594

business 3 1.2397 28.0991

socialsoftware 3 1.2397 29.3388

Yahoo 3 1.2397 30.5785

research 3 1.2397 31.8182

Japan 3 1.2397 33.0579

jp 3 1.2397 34.2976

communities 3 1.2397 35.5373

openSource 3 1.2397 36.777

Flickr 3 1.2397 38.0167

mashups 3 1.2397 39.2564

SecondLife 3 1.2397 40.4961

Table 3.1: An example of the most used tags selected for a user profile based on the original
tag cloud without further analysis. Bolded tags are the tags that have a recognized
lexical class.

The approach is tested with tagging data of users, which have different tagging habits. We
have mainly focused on users who have average or high number of tags per resources. Com-
parisons between the profile created by our algorithm and basic tag frequency list are made.
In Table 3.1 and 3.2, one can see an example of the tags selected for a profile for a user
whose tagging habits represents an average user. The total number of the user’s tags is 242
and the average number of tags per resource is 2.42. Table 3.1 represents the tags selected
for a user profile based on tag usage frequencies without further lexical analysis. As we can
see the most used tags include tags like "++" and "2check" that has no relevance for a user
profile, but there are also relevant tags like "businessModels" and "socialnetworking" that were
unrecognized. With extra analysis these tags could be analysed and included for a profile. In
Table 3.2, one can be see the tags selected for a profile based on the tag frequency as well as
lexical analysis of tags. Although the number of unrecognized tags is quite high, we restricted
the creation of a user profile only for tags that have a recognized lexical class. The reason is
that we wanted to create a cleaner and a better sense for a tag cloud and to avoid importing all
nonsense tags into the user profile. Although the profile does not express all the interests of
a user and it might drop some relevant (unrecognized) tags from a profile it gives hints about
user’s interest without that user need to do an extra work for expressing it. What we do need
is an additional analysis for unrecognized words to get more results. This includes handling
of compound words better, support for handling synonyms, and semantic meaning of a word.

PHAROS: Techniques and Algorithms for Social Media Page 33 Version 1.0

Figure 3.2: An example of SCOT ontology, which is enhanced with skos-properties

Semantics would help us to cluster the tags that are related to each other.

Tag usage
frequency

Relative
tag usage
frequency %

Cumulative
relative
tag usage
frequency %

Co-tags Co-tags (no lexical
restriction)

advertising 6 2.4793 2.4793 marketing marketing
search 4 1.6529 4.1322
Google 4 1.6529 5.7851 Yahoo Yahoo, personali-

sation
business 3 1.2397 7.0248 web2.0

PHAROS: Techniques and Algorithms for Social Media Page 34 Version 1.0

research 3 1.2397 8.2645
communities 3 1.2397 9.5042 wiki
Japan 3 1.2397 10.7439
Yahoo 3 1.2397 11.9836 Google Google, personali-

sation

tagging 2 0.8264 12.81 socialnetworking,
++

participatory 2 0.8264 13.6364
technology 2 0.8264 14.4628
people 2 0.8264 15.2892
identity 2 0.8264 16.1156
analysis 2 0.8264 16.942
reputation 2 0.8264 17.7684
marketing 2 0.8264 18.5948 advertising advertising

travel 2 0.8264 19.4212
Ethiopia 2 0.8264 20.2476
trends 2 0.8264 21.074
newspapers 2 0.8264 28.5116

Table 3.2: An example of the most used tags selected for a user profile based on only tags that has
recognized lexical class. Only co-tags that has a recognized lexical class and which has
been used at least two times together are selected for a profile. As a comparison the result
of co-tags with no lexical restriction, which has been used at least two times together are
shown on the table. Tags in Bold typeface are the tags that were selected also for the
profile on Table 3.1.

Tags are used to express a user interest in a user profile and they can be used to support
searching and browsing content in Pharos. This was another reason to use only recognized
tags for a profile. Because the tags will be utilized in other service than they were originally
created the recognized lexical words will support information retrieval and keyword based
search better. For selected tags also co-occurred tags that have recognised lexical class and
which have been used at least two times together are included for a profile. Co-occurrences
indicates a user’s viewpoint to the topic described as a tag. Co-occurred tags could be utilised
to widen the search terms to better find the content of user’s interest and also to rank search
results based on this information. For our first example user (table 2), there are not so many
co-occurrences that have been used more than once. As a comparison, on table 3 one can
see a part of the user profile for a user who has a lot of co-occurred tags. These co-occurred
tags reveal quite well user’s viewpoint to the topic that has been selected for a profile. We can
utilise also information about the tags that has same word root for enhancing search terms
and creating relations between tags. For our example user, words like search, searching and
blog, blogs have same word root.

PHAROS: Techniques and Algorithms for Social Media Page 35 Version 1.0

Tag Tag usage
frequency

Relative
tag usage
frequency

Relative
cumulative
tag usage
frequency

Co tags (recognised lexical class)

Design 33 39,759 39,759 web, usability, research, tools, mobile,
social, accessibility, html, development,
tutorial, interface, marketing, communi-
cation, CSS, designer, business, learn-
ing, search, guidelines, community, el-
derly, standards, user, science, innova-
tion, color, technology, analysis, adver-
tising, coding, emotion, browser, email,
information, documentation, UX, ethnog-
raphy, architecture, website, furniture,
tips, collaboration, markup, patterns, pro-
gramming

Web 20 24,096 63,855 design, social, community, tutorial, us-
ability, html, research, CSS, technology,
mobile, collaboration, communication,
business, internet, relationships, writing,
tips, advertising, programming, software,
content, standards, tagging, blog, inter-
face, tools, analysis, culture, documenta-
tion, guidelines, coding, SMS, marketing,
information, development, patterns, text,
work

mobile 17 20,482 84,337 design, research, SMS, social, user,
twitter, web, community, elderly, guide,
guidelines, widget, ethnography, usabil-
ity, cellphone

usability 16 19,277 103,614 design, UX, web, IA, research, accessi-
bility, tool, user, tools, architecture, infor-
mation, elderly, search, interface, mar-
keting, communication, tips, mobile, ad-
vertising

Table 3.3: A part of the user’s interest profile, based on all tags of the user. Bolded tags are the tags
that were not listed on a user profile made based on recent tags of the user.

3.1.8 Optional features

Our initial idea is that the result of a user profile is shown to the user who can evaluate and
modify it. This gives us various opportunities to let the user verify and modify the interest
profile. We can improve the recognition of unrecognized tags, but not solve all of them. Be-
cause of that, one opportunity is that besides the selected tags for a profile also the most used

PHAROS: Techniques and Algorithms for Social Media Page 36 Version 1.0

unrecognized tags are shown to the user. In this case, users can include them into the profile
if they want to, but also correct misspelled words. For the above analysis, the recent tags of a
user were used. In our dataset we also have a list of all the tags that the user has created and
how many times each of them has been used. The plan was to use both recent and total tag
usage for creation of profile. The same analysis as in table 2 is made for all users tags, except
for the co-occurrence analysis. The co-occurrence data is not available for all user’s tags, due
to the limitation of the del.icio.us APIs. The list of selected tags from the user’s recent and
total tags is compared. The tags that are not listed in the initial profile, but are listed in a profile
made based on all tags of the user are potential candidates to be included in a user’s profile
(see Table 4). These tags could be shown to a user and a user can decide whether she or he
wants to include them into their profile of interest as well. The user is the only one who could
indicate whether these tags are still a current interest of the user. In case of our example user,
the tags like blog, mobile, metadata, copyright, internet, project, searching, educational, Africa
would be suggested to be included in the user’s profile. More evaluations need to be done
with actual users.

Tag Tag usage fre-
quency

Relative tag usage fre-
quency %

Cumulative relative tag
usage frequency %

blog 56 3.0468 3.0468
Google 32 1.741 4.7878
participatory 31 1.6866 6.4744
advertising 28 1.5234 7.9978
newspapers 23 1.2514 9.2492
research 18 0.9793 10.2285
mobile 17 0.9249 11.1534
tagging 17 0.9249 12.0783
news 16 0.8705 12.9488
video 15 0.8161 13.7649
business 15 0.8161 14.581
metadata 14 0.7617 15.3427
identity 14 0.7617 16.1044
collaborative 13 0.7073 16.8117
conferences 13 0.7073 17.519
copyright 12 0.6529 18.1719
internet 12 0.6529 18.8248
communities 12 0.6529 19.4777
Yahoo 11 0.5985 20.0762
project 11 0.5985 20.6747
social 11 0.5985 21.2732
innovation 10 0.5441 21.8173
technology 10 0.5441 22.3614

PHAROS: Techniques and Algorithms for Social Media Page 37 Version 1.0

searching 10 0.5441 22.9055
educational 10 0.5441 23.4496

Table 3.4: A part of the user’s interest profile, where the user has high number of tags pr
resource. Bold tags are the tags that were not listed on a user profile made based
on recent tags of the user.

3.1.9 Suggestions for handling tags within Pharos

If the Pharos system supports tagging, following features should be considered for implemen-
tation in order to promote creating tags that can be easily utilized.

• support for creating tags consisting of more than one word (compound tag)

• support for tag categories (opinion, task organizing, topic) would help in the analysis of
users’ tags

• support for re-using one’s tags (helps in minimizing typos and different variations of the
same word)

• suggestions for tags

If there is tagging support within Pharos, the algorithm could be utilized directly to analyze
these tags, but even then, a possibility to import tags from other systems could be useful.

3.1.10 Conclusions and future work

In our work, we created a user profile by analyzing user created tags in del.icio.us. It confirmed
us that user’s tags reflect the person’s interest and are a good source for interest profile data.
This approach would help users to express their interests without extra work.

Because of the nature of freely choosable words and different tagging habits among user,
users’ tag clouds are very heterogeneous. Tag clouds might be messy for other people than
the user personally. We addressed this issue by using lexical analysis together with tag usage
frequencies to clean user’s tags and for selecting only the most used tags for a profile. Relative
cumulative tag usage frequency was used to select threshold for tags which were included in
a user’s profile. This approach modifies threshold for different users by taking into account
different tagging habits of users. We focused on English tags, lexical analysis need to be
customized for different languages.

The user profile includes user’s interests defined as collection of tags and their co-occurring
tags with corresponding information about the tag and tag co-occurrence usage frequencies.
Only the tags that have a known lexical class were selected for a profile.

PHAROS: Techniques and Algorithms for Social Media Page 38 Version 1.0

Despite the use of lexical analysis, there were still many unrecognized tags and the analysis
of unrecognized tags needs to be improved. This includes analysis of compound words as
well as better analysis for synonyms and semantic meaning of a word.

Because the lexical analysis drops out tags that are not recognized, optionally users could be
shown the most used unrecognized tags, so that a user can import them into the profile as well
if they want to. More evaluation needs to be done with actual users to evaluate whether the
created profile is acceptable for them and what needs to be improved. Anyway it is important
that the user is given an opportunity to modify the profile.

The approach for taking account the recent and all tagging data of a user will be reconsidered
when we have analyzed the available tagging data from other services as well. Another aspect
relating to time sensitivity of tags is how the user profile is updated afterwards. A user’s interest
profile will be influenced by added tags in external services, as well as tags used in PHAROS
itself. That needs to be addressed in future work.

Although the tags in del.icio.us do not necessarily relate straight to multimedia like music or
movies, they describe user’s interest areas. Most users are interested about available multi-
media content relating to their interest areas as well, not only relating to their music or movie
preferences. It would be interesting to harvest the tags of the user from different services,
because depending on the scope of the service different interest areas of the user can be
detected to complement the created profile. In future work we will test our algorithm with an-
other dataset, for example tagging data from Flickr! or Last.fm. The methods for combining
the results of different services for creating one combined user profile will be created.

For the PHAROS platform application, ser profile can be used for supporting browsing of
content as well as for ranking search results based on user’s interests. One opportunity is to
show a user the search results found in PHAROS as well as content that user has tagged in
other services with a same tag that was used as keyword for searching. Another way to utilize
user’s tags in PHAROSs is to give a user an opportunity to create RSS feeds based on user’s
interest expressed as tags in a user profile.

Besides the tags, information in user created playlists or content posted to different groups by
a user would be a good source to enhance information in a user profile as well as metadata
of content itself. This will be one of our future interest areas as well.

3.2 Information Diffusion In Blogosphere

The Internet has emerged as a vital medium for marketing and advertising by providing global
exposure of information to large audiences worldwide at very low cost. According to Inter-
active Advertising Bureau (IAB) and Price Waterhouse Coopers (PWC), Internet advertising
revenues for 2006 are estimated at 16.8 billion, a 34 percent increase over the previous rev-
enue record of 12.5 billion in 2005 [83]. Many forms of online advertising and marketing have
been developed − keyword-targeted search engine advertising, permission email, floating
animated page takeovers, interactive on-page rich media ads, to name a few [84]. Further,

PHAROS: Techniques and Algorithms for Social Media Page 39 Version 1.0

Figure 3.3: Example of a hyperlink relationship between blogs.

recent research has found a significant correlation between blog mentions and book sales [2],
thus demonstrating that blogosphere is an interesting source for predictive models. In this
context of trend prediction and trend analysis, it is important to study how information flows in
blogosphere.

In this section, we focus on the problem of discovering information diffusion paths from blo-
gosphere to capture the patterns of information flow through blogs. Based on the discovered
knowledge, advertisers can be enlightened to select an optimal set of blogs as their target
audience or to estimate the extent to which individuals will be influenced by a campaign.

How information is propagated in networks is an important problem and has been investigated
in many areas. In the field of sociology, the study of the diffusion of innovation focuses on ex-
amining the role of word of mouth in spreading innovations [85]. In recommender systems,
user access patterns are leveraged to model information flow and generate effective person-
alized recommendation [86]. Trust propagation is an active research issue which models the
propagation of trust scores and predict trust and distrust between users based on trust prop-
agation models [87]. In this paper, we aim to discover information propagation in blogspace
in terms of blog sequences, called information diffusion paths. Each path indicates that a
sequence of blogs frequently propagating information sequentially3.

One way of observing information propagation between blogs is based on hyperlinks, e.g.,
when a post (from one blog) provides a hyperlink to another post (from another blog). As
shown in Figure 3.3, the hyperlink relationship between two blogs indicates that the information
from the right blog flowed to the left one. Such hyperlink-based blog networks have been
studied in [88] to capture the activity bursts within web communities. However, a blogger who
read a previous post from another blog may write a post on a similar topic without citing the
previous one. Hence, by discovering information diffusion paths from the blog network formed
by explicit hyperlinks, one may not be able to discover all information diffusion paths. In our

3In this paper, the notions of “information flow”, “information diffusion” and “information propagation” are used
alternatively.

PHAROS: Techniques and Algorithms for Social Media Page 40 Version 1.0

Table 3.5: Topic blog sequence database.

Topic Blog Sequence

1 〈(b1, 03/05/07), (b2 , 04/05/07), (b3 , 06/05/07)〉

2 〈(b2, 09/05/07), (b3 , 12/05/07)〉

3 〈(b1, 15/05/07), (b2 , 17/05/07)〉

4 〈(b3, 12/05/07), (b2 , 18/05/07), (b4 , 21/05/07)〉

5 〈(b1, 19/05/07), (b2 , 25/05/07), (b4 , 27/05/07)〉

work, we instead discover information propagation patterns by analyzing the content of posts
and tracking the topics among blogs.

3.2.1 Problem Definition

Some preliminary definitions are necessary before formally defining the problem of mining
information diffusion paths from blogosphere, which we will give in the following paragraphs.

A blog community collected in a given time period [ts, te] is a set of n blogs Ω = {b1, b2, . . . , bn}.
Each blog b = (p1, p2, . . . , pm) contains a set of published posts, where each post is associ-
ated with a publishing time point, T (pi), such that ts ≤ T (pi) ≤ te.

Since we aim to discover how information flows from blog to blog by analyzing content instead
of hyperlinks of posts, we make a closed world assumption, similar to [85], that in a given blog
community, all posts on a topic except the first one are the result of communication within the
community4. Given a particular topic, we can retrieve a sequence of posts from different blogs,
〈p1, p2, . . . , pk〉, talking about the same topic sequentially, e.g., ∀i ∈ [1, k), T (pi) ≤ T (pi+1).
Let B(pi) be the blog to which the post pi belongs. Given a post sequence on some topic, we
can get a corresponding blog sequence 〈B(p1), B(p2), . . . , B(pk)〉. Given the closed world
assumption described above, such a sequence indicates that a piece of information flowed
from B(p1) through B(pk). Formally, given some particular topic, the corresponding topic

blog sequence is defined as follows:

Definition 1 [Topic blog sequence] Given a particular topic c, a topic blog sequence Q(c) =
〈(b1, t1), (b2, t2), . . . , (bk, tk)〉, is a list of blog-time pairs such that each blog bi publishes a

post on the topic c at time ti. Moreover, ∀i ∈ [1, k), ti ≤ ti+1.

4This assumption can be weakened by increasing the thresholds of support and strength defined in Section 3.

PHAROS: Techniques and Algorithms for Social Media Page 41 Version 1.0

Given a blog community collected in a certain time period, suppose there exist k topics in
the set of all posts of the blog community, we can then get k topic blog sequences as above.
Thus, the blog community can be modeled as a blog sequence database as follows.

Definition 2 [Blog sequence database] Given a blog community collected in time period

[ts, te], which contains a set of blogs Ω = {b1, b2, . . . , bn} and a set of posts on k topics

Γ = {c1, c2, . . . , ck}, it can be modeled as a blog sequence database D in the form of

(i,Q(ci)), where i (1 ≤ i ≤ k) is the identity of a topic and Q(ci) = 〈(b1, t1), (b2, t2), . . . ,
(bm, tm)〉 (ci ∈ Γ, bi ∈ Ω, ts ≤ ti ≤ te) is a topic blog sequence.

Table 3.5 shows an example blog sequence database. The first entry indicates that blogs b1,
b2 and b3 have published posts on the topic c1 on May 3rd, May 4th, and May 6th in 20075.

A blog sequence S = 〈b1, b2, . . . , bm〉 is an ordered list of blogs. Different from a topic blog
sequence, each element of a blog sequence is an individual blog instead of a blog-time pair.
We say a topic blog sequence Q(ci) = 〈(bi

1, t
i
1), (b

i
2, t

i
2), . . . , (bi

m, tim)〉 supports a blog se-
quence S = 〈bj

1, b
j
2, . . . , b

j
n〉, denoted as Q(ci) w S, if ∃ v (1 ≤ v ≤ m − n + 1) such that

bj
1 = bi

v, b
j
2 = bi

v+1, . . . , b
j
n = bi

v+(n−1). For example, the blog sequence S = 〈b1, b2〉 is

supported by three topic blog sequences, Q(c1), Q(c3) and Q(c5), in Table 3.5.

Given a blog sequence database, if a blog sequence is frequently supported by topic blog
sequences, this indicates that information is usually propagated through this sequence of
blogs. Hence, we define the support measure of a blog sequence to reflect how frequently it
is supported by a blog sequence database.

Definition 3 [Support] Given a blog sequence database D and a blog sequence S, the sup-

port of S with respect to D, denoted as SuppD, is the fraction of topic blog sequences in D
which support S.

SuppD(S) =
|{Q(ci)|S v Q(ci) & Q(ci) ∈ D}|

|D|
where |D| is the total number of topic blog sequences in the database.

The support measure takes on values from 0 through 1. The more topic blog sequences
supporting a blog sequence, the higher the support value of the blog sequence. For example,
let S = 〈b1, b2〉. The support of S with respect to the database in Table 3.5 is 0.6 because it is
supported by three topic blog sequences.

The support of a blog sequence reflects how frequently the information flows through the
sequence. In order to evaluate how quickly the information flows, we define a strength mea-
sure for a blog sequence. Note that, a blog sequence might be supported by multiple topic
blog sequences, where each has different time intervals between successive blogs. For
example, the blog sequence 〈b1, b2〉 is supported by Q(c1), Q(c3) and Q(c5) in Table 3.5.
In Q(c1), it takes one day to propagate the information from b1 to b2. However, it takes

5In this paper, we use time points with a granularity of one day for simplicity. Any other time granularity can be
used similarly.

PHAROS: Techniques and Algorithms for Social Media Page 42 Version 1.0

Topic DetectionA blog community

Information Diffusion
Path Mining

Blog Sequence Database

Support, Strength,
Latency thresholds

Information Diffusion Paths

Figure 3.4: The framework of information diffusion path mining.

2 days in Q(c3) and 6 days in Q(c5). We define the latency of a topic blog sequence
Q = 〈(b1, t1), . . . , (bm, tm)〉, denoted as Lat(Q), as the total time intervals between suc-
cessive blogs

∑

1≤i<m(ti+1 − ti). We defined the matched topic blog subsequence of a

topic blog sequence, Q(ci) = 〈(bi
1, t

i
1), (b

i
2, t

i
2), . . . , (bi

m, tim)〉, with respect to a blog se-
quence, S = 〈bj

1, b
j
2, . . . , bj

n〉, as M(Q,S) = 〈(bi
v , t

i
v), (b

i
v+1, tiv+1), . . . , (b

i
v+(n−1), t

i
v+(n−1))〉,

if ∃ v (1 ≤ v ≤ m−n+1) such that bj
1 = bi

v, b
j
2 = bi

v+1, . . . , b
j
n = bi

v+(n−1). For example, given

Q(c1) in Table 3.5 and the blog sequence S = 〈b1, b2〉, the matched topic blog subsequence
M(Q(ci), S) = 〈(b1, 03/05/07), (b2, 04/05/07)〉. Then, the strength of a blog sequence can
be defined as follows.

Definition 4 [Strength] Given a blog sequence database D, some latency threshold δ, and

a blog sequence S = 〈b1, b2, . . . , bm〉, the strength of the sequence, denoted as StregD,δ(S),
is

StregD,δ(S) =
{Q|Lat(M(Q,S))) ≤ δ , S v Q,Q ∈ D}

{Q|S v Q,Q ∈ D}

That is, the strength of a blog sequence is the fraction of supporting topic blog sequences
which have the latency of their matched topic blog subsequences less than or equal to the
given latency threshold. For example, let the latency threshold δ = 3. The strength of S =
〈b1, b2〉 with respect to the database in Table 3.5 is 2/3 because it is supported by three topic
blog sequences (i.e., Q(c1), Q(c3), and Q(c5)) and two of them (i.e., Q(c1) and Q(c3)) have
the latency of matched topic blog subsequences less than the given threshold. The strength
value of a blog sequence ranges from 0 to 1. If all supporting topic blog sequences have their
latency of matched topic blog subsequences no greater than the specified threshold δ, the
strength of the blog sequence is 1. If none of the matched topic blog subsequences has the
latency less than or equal to the threshold δ, the strength of the blog sequence is 0.

Given a blog sequence database, we are interested in blog sequences which are not only
supported frequently by the database but also supported frequently by topic blog sequences
which propagate information quickly. Thus, we define an Information Diffusion Path (IDP) as
a blog sequence satisfying constraints specified as follows.

Definition 5 [Information Diffusion Path] Given a blog sequence database D, a support thresh-

old α, a latency threshold δ and a strength threshold β, a blog sequence S is an Information

Diffusion Path (IDP) if 1) SuppD(S) ≥ α and 2) StregD,δ(S) ≥ β.

For example, given the support threshold α = 0.4, the latency threshold δ = 3 and the strength

PHAROS: Techniques and Algorithms for Social Media Page 43 Version 1.0

threshold β = 0.6, the blog sequence S = 〈b1b2〉 is an IDP since SuppD(S) = 0.6 > α and
StregD,δ(S) ≈ 0.67 > β.

Then, the problem of information diffusion path mining can be formally stated as follows.
Given a blog sequence database D, a support threshold α, a latency threshold δ and a
strength threshold β, the problem of information diffusion path mining is to discover the set
{S|SuppD(S) ≥ α & StregD,δ(S) ≥ β}. In the rest of this paper, we omit the subscripts D
and δ if they are clear from the context.

Let us point out that there are two fundamental differences between information diffusion path
mining and classical frequent sequential pattern mining.

• Information diffusion path mining is more strict in defining the support relationship be-
tween sequences. In classical frequent sequential pattern mining, a sequence 〈b1, b2, b3〉
supports 〈b1, b3〉 too. In information diffusion path mining, the sequence supports 〈b1, b2〉
and 〈b2, b3〉 only.

• In classical frequent sequential pattern mining, there is only one constraint on the sup-
port value of sequences. In contrast, we have two constraints in information diffusion
path mining, i.e. the support value and the strength value of blog sequences.

Due to the differences, existing algorithms for frequent sequential pattern mining cannot be
used directly to mine information diffusion paths. We thus developed a new algorithm for
information diffusion path mining, which is described in the next section.

3.2.2 Discovery of Information Diffusion Paths

The framework we proposed for mining information diffusion paths from blogosphere is shown
in Figure 3.4. Given a blog community collected in a given time period and a set of thresholds
as the input, we need to identify a set of topics from the collection of posts in the blog commu-
nity first. Then, the blog community is transformed to be a blog sequence database. Next, we
mine information diffusion paths from the database with respect to given thresholds. The out-
put is the set of desired information diffusion paths satisfying the thresholds. In the following,
we will explain the two main components of the framework, topic detection and information

diffusion path mining, in turn.

Topic Detection

As discussed, we track the information flowing from blog to blog based on the topics of posts.
Given a blog community with a collection of posts, we need to detect the topics from the posts.
There exist a number of algorithms in detecting topics from a text corpus, such as LSA [89]
and pLSA [90]. We employ Latent Dirichlet Allocation (LDA) [91], which is a probabilistic
generative model, to detect topics from post collections. LDA is not prone to overfitting and
can be generalized easily to new documents. The number of parameters of the LDA model

PHAROS: Techniques and Algorithms for Social Media Page 44 Version 1.0

does not grow with the size of the corpus. Briefly, given k topics (k can be determined by
cross-validation), the probability of the ith word in a given post is formulated as

P (wi) =
k

∑

j=1

P (wi|zi = j)P (zi = j)

where zi is a latent variable indicating the topic from which the ith word is drawn. P (wi|zi = j)
is the probability of the ith word given the jth topic. P (zi = j) is the probability of choosing
the jth topic for the post. The parameters θw

j , the probability of using word w in topic j, θp
j , the

probability of topic j in post p, can be estimated with Gibbs Sampling [86]. Interested readers
are referred to [91] for the details of LDA.

After detecting k topics from the post collection, each post is assigned k values which are
the probabilities that the post belongs to the topics c1, c2, . . . , ck. We group each post to the
cluster for which it is assigned the highest probability. Given a cluster, we retrieve the blog
identities and time points of each post to generate a topic blog sequence. Based on this, a
blog community can be represented as a blog sequence database.

IDP Mining

We now describe how to mine information diffusion paths from a blog sequence database
with respect to user specified thresholds. Particularly, we designed a new data mining ap-
proach called IDP-Miner based on FP-Growth [92] and FS-Miner [93], which are algorithms
for frequent itemset mining and frequent sequence mining respectively. The reason why we
develop IDP-Miner based on the two algorithms is that, similar to frequent itemset mining
and frequent subsequence mining, the downward closure property [92] holds for the support
measure defined for blog sequences.

Basically, both FP-Growth and FS-Miner construct a special tree structure to register the com-
pact information of the database for frequent pattern mining. However, since IDPs are defined
differently from classical frequent itemsets or sequences, the data structures constructed by
the two algorithms do not preserve sufficient information for IDP mining. Hence, we designed
a new data structure, IDP-Tree, which not only registers the sequential information but also
the temporal information of blog sequences.

IDP-Tree

An IDP-Tree is composed of two components: a tree structure and a header table.

• A tree structure with a special root node R and a set of blog sequence prefix subtrees
as children of the root. Each node in the tree structure has a node-name bi that repre-
sents a blog from the blog sequence database. Each edge 〈bi, bj〉 in the tree structure
corresponds to matched topic blog subsequences of topic blog sequences with respect

PHAROS: Techniques and Algorithms for Social Media Page 45 Version 1.0

to a blog sequence S = 〈bi, bj〉. Each edge is associated with two fields edge-strength

and edge-link. Edge-strength is a vector of groups of latencies of the matched topic
blog subsequences represented by the edge. Note that, the number of total elements
in the vector corresponds to the number of topic blog sequences that support the blog
sequence S = 〈bi, bj〉 in the particular tree path. Edge-link is a pointer which points to
the next occurrence of the edge 〈bi, bj〉.

• A header table maintains three fields: edge-name 〈bi, bj〉 stores the name of an edge in
the tree structure, edge- count stores the number of topic blog sequences supporting
the blog sequence represented by this edge, and edge-head is a pointer which points
to the first occurrence of the edge in the tree.

For example, an example IDP-Tree is shown in Figure 3.5. The algorithm of constructing
an IDP-Tree is described in Figure 3.6. We illustrate the algorithm by giving an example of
constructing an IDP-Tree for the database in Table 3.5. Suppose the support threshold α be
0.4. A blog sequence 〈bi, bj〉 is a potential IDP if it is supported by no less than α× |D|=0.4×
5 = 2 topic blog sequences. Hence, we scan the database for the first time to find the set
of 〈bi, bj〉 such that each is supported by no less than 2 topic blog sequences. For example,
〈b1, b2〉, 〈b2, b3〉, and 〈b2, b4〉 are found because they are supported by 3, 2 and 2 topic blog
sequences respectively. Then, we create an entry for each 〈bi, bj〉 in the header table, which
is shown in the left part of Figure 3.5.

Then, we scan the database for the second time. For each topic blog sequence, we check
whether it supports any blog sequences in the header table. If yes, we insert the matched topic
blog subsequences into the tree structure. For example, consider the first topic blog sequence
in Table 3.5. Since it supports 〈b1, b2〉 and 〈b2, b3〉, the matched topic blog subsequences are
inserted as follows. When inserting 〈(b1, 03/05/07), (b2 , 04/05/07)〉, since there exists no
child node b1 of the root R, we create the node b1. Similarly, we create the node b2 as a
child of b1. Next, for the edge 〈b1, b2〉, we associate a vector of edge-strength with the first
element of the first group as the latency of the matched topic blog subsequence, which is 1.
Then, we link the edge-head of 〈b1, b2〉 in the header table to this edge. The matched topic
blog subsequence 〈(b2, 04/05/07), (b3 , 06/05/07)〉 is inserted under the current node. The
other topic blog sequences can be inserted similarly. The constructed IDP-Tree is shown in
Figure 3.5.

Note that, the edge-strength of the edge 〈b1, b2〉 in Figure 3.5 is a vector containing three
groups of latencies. The first two groups contain respective latencies of the current matched
topic blog subsequence, when it is followed by the two child nodes in some topic blog se-
quences. The last group contains the latency of the current matched topic blog subsequence
when it is not followed by any other matched topic blog subsequence in some topic blog se-
quence (e.g., Q(c3)). Hence, each edge 〈bi, bj〉, where bj has k child nodes, is associated
with an edge-strength which contains either k or (k + 1) groups of latencies.

The major difference between IDP-Tree and FP-Tree [92] is as follows: FP-Tree is a tree struc-
ture constructed for frequent itemset mining. Hence, the header table maintains information
about frequent individual items (blogs). Differently, we record information about frequent blog
sequences 〈bi, bj〉 in the header table. The reason is that if there exists no frequent blog se-

PHAROS: Techniques and Algorithms for Social Media Page 46 Version 1.0

R
Header Table

edge
name

edge
count

edge
head

<b1, b2>

<b2, b3>

<b2, b4>

3

2

2

b1

b2

b3

b2

b3 b4

[[1][6][2]]

[2]

[3] [3]

b4

[2]

Figure 3.5: An example IDP-Tree.

Input: A blog sequence database D, support threshold a,
Output: An IDP-Tree

Discription:
1. Scan D to find S = <bi, bj> s.t. Supp(S) >= a
2. For each S, create an entry in the header table
3. Create a root node R
4, For each blog sequence Qi in D
 call InsertTree(R, Qi)
4. Return IDP-Tree

Function: InsertTree(N, <b1, b2, …, bm>)
1. if <b1, b2> exists in the header table
2. if N has a child node C s.t. C.node-name = b1

 append a latency to N-C.edge-strength
3. else
 create a node C with C.node-name = b1

 create a vector as N-C.edge-strength
 link N-C to the edge-head in the header table
4. if <b2, …, bm> is not empty
 call InsertTree(C, <b2, …, bm>)

Figure 3.6: IDP-Tree construction algorithm.

quence 〈bi, bj〉, we do not need to construct the data structure any more even if there exist
frequent individual blogs.

IDP-Tree is mainly different from FP-Tree [92] and FS-Tree [93] on the following aspect: FP-
tree/FS-Tree only registers the number of times an item (blog) or an edge (blog sequence) is
supported. However, we maintain not only the number of times a blog sequence is supported,
but also the latency of supporting topic blog sequences so that the strength value of a blog
sequence can be obtained from the data structure as well.

IDP-Miner

After constructing the IDP-tree, we can mine IDPs with respect to a set of given thresholds
from the structure directly without referring to the blog sequence database anymore. The
algorithm of mining IDPs from the IDP-Tree is shown in Figure 3.8. We illustrate the algorithm

PHAROS: Techniques and Algorithms for Social Media Page 47 Version 1.0

by showing an example mining procedure from the IDP-Tree in Figure 3.5. Basically, there are
three steps involved in the mining procedure.

Extracting Related Paths. Given an entry 〈bi, bj〉 in the header table, all occurrences of
the edge in the tree can be extracted by following its edge-head in the header table and
corresponding edge-links in the tree. For each edge connected by edge-links, we extract the
path from the root to the current edge. For example, consider the last entry in the header
table in Figure 3.5, 〈b2, b4〉. By following the corresponding edge-head and edge-links, we can
extract two paths: (〈b1, b2〉 : [[1][6][2]], 〈b2 , b4〉 : [2]) and (〈b2, b4〉 : [3]). (The numbers after the
colons are the associated edge-strengths.) However, not all the information in the extracted
paths are useful for mining IDP involving 〈b2, b4〉. For example, the edge-strength of 〈b1, b2〉
in the first path contains three groups of latencies which correspond to the latencies when it is
followed by 〈b2, b3〉, 〈b2, b4〉 and empty respectively. Since b4 is the second child of b2 in the
path, we extract the second group of edge-strength of 〈b1, b2〉. Then, the first path turns out
to be (〈b1, b2〉 : [2], 〈b2, b4〉 : [2]). It can be observed from the path that 〈b1, b2〉 occurs before
〈b2, b4〉 in one topic blog sequence because now the size of each edge-strength in the path is
one. And the values of the edge-strengths indicate that it takes 6 days for the information to
be propagated from b1 to b2 and 2 days from b2 to b4.

Constructing Conditional IDP-Tree. After extracting related paths for a blog sequence
〈bi, bj〉, we construct a conditional IDP-Tree to mine IDPs involving 〈bi, bj〉. Basically, this
can be done by inserting the extracted the paths into a tree structure in a backward manner.
We create necessary nodes and edges and share them when possible. For example, Fig-
ure 3.7 shows the conditional IDP-Tree constructed for 〈b2, b4〉. The edge-strength of each
edge is created similarly.

b4

Extracted Paths:
(<b1, b2>: [6], <b2, b4>: [2])
(<b2, b4>: [3])

b2

b1

[[6][3]]

[2]

Discovered IDP:
S = <b4, b2>
Supp(S) = 0.4
Streg(S) = 0.5

Figure 3.7: Conditional IDP-Tree of 〈b2, b4〉.

Discovering IDP. Given a conditional IDP-Tree of a blog sequence 〈bi, bj〉, IDPs involving
the blog sequence can be discovered by performing a depth-first traversal of the conditional
IDP-Tree. While traversing the tree, we compute the support and strength of derived blog
sequences. For example, we firstly derive the blog sequence S1 = 〈b2, b4〉 by traversing the
tree (Note that, the edge 〈b4, b2〉 represents the blog sequence 〈b2, b4〉 since we construct the
conditional IDP-tree by inserting related paths in the backward manner). The support of S1

can be computed from the size of edge-strength associated with the edge 〈b4, b2〉. Hence,
Supp(S1) = 2/3 ≈ 0.67. When computing the strength of the blog sequence, we need to
convert the edge-strength to a bitmap. For each element in the vector of edge-strength, if it
is no greater than δ, the bit is set as 1. Otherwise, the bit is zero. For example, suppose

PHAROS: Techniques and Algorithms for Social Media Page 48 Version 1.0

the threshold δ is 3, the bitmap corresponds to the edge-strength of 〈b4, b2〉 is 〈01〉. Then,
Streg(S1) = 1/2 = 0.5. Suppose the strength threshold β is 0.5, S1 = langleb2, b4〉 is an
IDP.

Then, we further traverse the tree to derive the blog sequence S2 = 〈b1, b2, b4〉. Since the
size of the edge-strength of 〈b2, b1〉 is 1, Supp(S2) = 1/5 < α. Hence, it is not an IDP. Since
all nodes in the conditional IDP-tree is traversed, the mining procedure for this conditional
IDP-tree stops. Note that, if the support of S2 satisfies the threshold, we need to compute the
strength of S2. In order to do that, we should accumulate corresponding elements of edge-
strengths in a path to obtain the correct latency of a matched topic blog subsequence. For
example, we add the first element of edge-strength of edge 〈b4, b2〉 with the edge-strength of
edge 〈b2, b1〉 to get the latency 8. Then, the corresponding bitmap is 〈0〉 and the strength of
S2 is zero.

Input: IDP-Tree, support threshold 0 , strength threshold 0,
 latency threshold 0
Output: a set of IDPs I

Description:
1. Set an empty set I
2. For each blog sequence Si in header table
3. Extract all paths reachable from Si.edge-head
4. Extract useful edge-strength values for all paths
5. Construct conditional IDP-Tree from extracted paths
6. Perform depth-first traversal on the conditional IDP-Tree
 to mine IDPs
7. I = I 0 discovered IDPs
8. Return I

Figure 3.8: The algorithm of IDP-Miner.

3.2.3 Performance Study

In this section, we conduct experiments to evaluate the performance of the developed IDP-

Miner algorithm in Section 3.2.2 and the effectiveness of information diffusion paths in Section
3.2.2. We implemented our approach in the Java. All experiments were run in a Windows
environment using a PC with a 2.00GHz Pentium processor with 2.00GB of RAM. In our
experiments, data collected from the DailyKos blogspace (http://www.dailykos.com) was used.
The data set consisted of 3, 563 time-stamped blog posts authored by a total of 300 authors.
All blog posts are published in March, 2006.

Performance of IDP-Miner

We first conduct experiments to evaluate the efficiency of IDP-Miner. We respectively gener-
ate 300, 400 and 500 topic clusters from the set of posts. Then, three corresponding blog se-
quence databases with different numbers of topic blog sequences can be obtained. We mine
IDPs from the three database by varying the support threshold. The experimental results are

PHAROS: Techniques and Algorithms for Social Media Page 49 Version 1.0

shown in Figure 3.9. Firstly, it can be observed that when the support threshold increases,
IDP-Miner is more efficient in discovering the set of IDPs. The reason of this observation is
that when the support threshold is getting greater, fewer blog sequences satisfy the threshold.
Hence, it takes less time to discover IDPs. Secondly, we observed from the figure that IDP-

Miner works faster on the database with more topic blog sequences. The reason is that given
the fixed number of blog posts, the more clusters are generated, the shorter each topic blog
sequence is. Consequently, fewer recursions will be run by IDP-Miner and more efficiency can
be gained. Thirdly, we noticed that when the support threshold is set around 0.6%, the running
time on databases with 300 and 400 topic blog sequences degrades sharply. After inspecting
the generated IDPs, we realized that this situation is caused by significantly reduced number
of IDPs that satisfy this threshold. We did not show the efficiency of IDP-Miner with respect
to the variation of the strength threshold and the latency threshold because IDP-Miner does
not narrow the search space based on the two thresholds. Hence, the efficiency of IDP-Miner

does not vary obviously along with the variation of the two thresholds.

0

1000

2000

3000

4000

5000

6000

7000

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Support threshold

R
un

tim
e

(m
s)

Data Size = 300

Data Size = 400

Data Size = 500

Figure 3.9: Efficiency of IDP-Miner.

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350

No. IDPs

R
un

tim
e

(m
s)

Figure 3.10: Scalability of IDP-Miner I.

We then conduct experiments to evaluate the scalability of IDP-Miner. Figure 3.10 shows the
scalability of IDP-Miner with respect to the number of IDPs. We observed that IDP-Miner

PHAROS: Techniques and Algorithms for Social Media Page 50 Version 1.0

0

500

1000

1500

2000

2500

500 600 700 800 900 1000 1500 1700 2000 2500 3000 3550

No. of posts

R
un

tim
e

(s
ec

)

Figure 3.11: Scalability of IDP-Miner II.

scales well along with the increase of the number of discovered IDPs. We further examine the
scalability of IDP-Miner with respect to the number of blog posts. The results are shown in
Figure 3.11. Again, IDP-Miner exhibits quite good scale-up feature.

Performance of IDP

We also conduct experiments to study the effectiveness of IDPs mined from blogosphere. We
generate a blog sequence database from the dataset with 500 topic blog sequences. Then,
we randomly select 80% of the topic blog sequences to mine IDPs. The remaining 20% topic
blog sequences are used to test the accuracy of discovered IDPs. We use the metric hit

ratio to compute how many blog sequences in form of 〈bi, bj〉 in the test dataset are predicted
correctly by discovered IDPs. Note that, each discovered IDP may be a sequence of blog
sequences with more than two blogs. We separate each IDP into blog sequences in form of
〈bi, bj〉. Then, a correct prediction means a blog sequence 〈bi, bj〉 occurred in both IDPs
and test dataset. The experimental results are shown in Figure 3.12. We observed that IDPs

mined from the content of blogs have good accuracy with high hit ratios. The more number of
IDPs are discovered, the higher hit ratio can be achieved.

We intended to compare the accuracy of IDPs mined from the content of blog posts against
IDPs mined from blog sequences formed from explicit hyperlink among blog posts. However,
we observed very limited hyperlink relationship between blog posts. We then resorted to the
sequential relationship between commenters on each post. For example, each post’s com-
menter were ordering in ascending order according to the commenting time. It yielded 2,777
sequences of commenters. However, we discovered that there are only 30 blog sequences in
form of 〈bi, bj〉 which occur twice in the set of 2, 777 sequences. No blog sequence that occurs
more than twice, which means the dataset is too sparse to be used as a competitor. Hence, we
believe it is more appropriate to discover information diffusion patterns in blogosphere based
on content analysis.

PHAROS: Techniques and Algorithms for Social Media Page 51 Version 1.0

0.975

0.98

0.985

0.99

0.995

1

1.005

0 100 200 300 400 500 600

No. of IDPs

H
it

R
at

io

Figure 3.12: Hit ratio of IDPs.

3.2.4 Related Work

In this section, we briefly review related work from the two areas of information propagation
and frequent sequential pattern mining.

As mentioned earlier, information propagation is well researched in a lot of areas such as so-
cial network, personal recommendation and trust scoring etc. In social network, the spread of
a piece of information is viewed as the propagation of innovation. Two fundamental models are
proposed in the literature to model the process by which nodes adopt innovations: threshold
model [94] and cascade model [95]. Song et al. [86] leveraged the access patterns of users
to model the information flow and generate effective personnel recommendation. Basically,
they considered the temporal order of information adoptions made by users and computed a
Markov chain based model. Then, the probability of information flow between two users are
calculated by assuming a uniform distribution on the probability of each possible path between
two users. Although weblog community is getting more and more popular, it is surprising that
only a limited work on discovering information propagation was done in the blogosphere. One
of the most similar work to ours is done in [85]. They also analyzed the content of posts
and model the collection of weblogs at two levels. One is a macroscopic characterization of
topic propagation which models the topics of posts as long-running chatter topics with mul-
tiple spike topics. The other is a microscopic characterization of propagation from individual
to individual by using the theory of infectious diseases. Thus, the task of the second level is
partially similar to the objective our work. However, they did not take into account the time
spent on propagating information from blog to blog. Kumar et al. [88] analyzed the evolving
link structure of blogspace to capture the bursts of activity within blog communities. Their work
is thus totally different from ours.

Frequent sequential pattern mining is one of the major problems of association rule mining.
There exists a number of algorithms for frequent subsequence mining; the interested reader

PHAROS: Techniques and Algorithms for Social Media Page 52 Version 1.0

can refer to [96] for a detailed survey on association rule mining.

3.2.5 Conclusions and Future Work

In this section, we proposed to discover information diffusion paths from blogosphere by an-
alyzing the content of blog posts. We modeled the task as a problem of frequent pattern
mining by representing a blog community collected in a certain time period as a blog se-
quence database. Then, we define interestingness measures for blog sequences and define
Information Diffusion Paths (IDP) base on the measures. Particularly, an IDP is defined as a
sequence of blogs that frequently discuss similar topics sequentially and frequently discuss
similar topics around similar time points. We proposed a framework for discovering information
diffusion paths from blogoshpere and designed a new algorithm for information diffusion path
mining. We also discussed the potential applications of information diffusion paths in online
advertising. Our preliminary experiments showed promising results that the developed IDP-

Miner algorithm is efficient in discovering IDPs and discovered IDPs are accurate in predicting
the future information flow in the blog community.

Our ongoing work includes that discovering information propagation from blogosphere by an-
alyzing both the content and the hyperlinks in a blog community, considering that blogs con-
nected by hyperlinks more likely adopt information from each other. We are also interested in
applying our work in other applications such as blog recommendation.

3.3 Opinion analysis in user-created textual contents

The Internet is more than ever an information source of high importance. With Web 2.0 and an
increasing number of community-based sites, online users share more and more their opinions
and preferences on all and sundry. This new and reachable information offers an enormous
opportunity for services eager to better satisfy their users. By learning users’ expectations and
needs, services have the opportunity to adapt as well as possible their services or products,
especially in the Personalization and Recommendation context.

Web sites like the foreseen PHAROS platform need detailed user profiles to recommend good
multimedia contents to their customers; however, in practice, people do not declare very pre-
cise interests. Therefore, it is difficult for an automatic recommender to make accurate pre-
dictions, especially for new users6. When user profiles and the content descriptions are too
vague to be matched, recommendation quality is poor and thus satisfying a broad user-base
is a real challenge. To complement explicit knowledge provided by the users themselves, sys-
tems observe users and record interaction data (e.g. logs, queries, clicks, or any feedback on
the contents consumption) in order to build implicit profiles. Such implicit knowledge is used
by statistical or machine learning techniques, such as Collaborative Filtering. But even if these

6This is called the cold start problem.

PHAROS: Techniques and Algorithms for Social Media Page 53 Version 1.0

techniques become more and more robust to the cold start problem, we are convinced that
understanding the broader usage patterns on the Internet and applying this knowledge to a
particular set of users within a particular website (e.g. PHAROS platform) will help in providing
a better matching between users and items.

What is proposed here is to capture users’ preferences in user-created content such as movies
reviews, blogs or natural language annotations about multimedia contents. We focus on a
method which analyzes the natural language contents provided by a community site gathering
movie fans (source www.flixster.com); from their reviews, we extract vocabulary dedicated
to express and share sentiment. With such a dictionary and our home-made tools, we aim
to build opinion profiles describing both people and communities. The challenge will be to
use this knowledge in the particular context of Pharos platform: we propose to reuse our
opinion prediction system on Pharos users blogs/textual content to add new rated items to
their profiles.

For the content acquisition, we focused ourselves on the Flixster website. www.Flixster.com

is a community site offering Web 2.0 functionalities. Movies fans find news, trivias, movie
descriptions, and also many places where they can share their opinions about films and ac-
tors. It gathers currently approximately 23, 000, 000 users, and 33, 000 movie cards that any
user can rate and comment. Each registered user has a personal homepage, where he can
describe his preferences and create lists of favorite films and actors. Users can also create a
social network with other registered users and communicate with them.

Here are three screenshots of www.flixster.com. The homepage (see Fig. 3.13), an example
of movie page (see Fig. 3.14) and an example of user page (see Fig. 3.15).

To acquire data, we first have used wget. We have then obtained a seed of 50,000 user home-
pages. By using users’ identity on these pages, we have crawled reviews and social network
of approximately 10,000 users which gave us 360,000 reviews, 9,209 movie cards and 4,983
actor cards to analyze. The reader may refer to 3.16 to get a global understanding of the
whole interconnected data.

In the current study, we focus on the reviews. We point here that each review is also rated
by the author according to a 5 stars scale 0, ..., 5. These ratings will be used to evaluate the
predictions made automatically by our tool. We will see that predicting such precise rates are
non trivial, and is a challenge for humans as well (see [97]). From those rates, we reclassify
reviews into 2 classes: negative and positive.

3.3.1 Review analysis using NLP approach

The final aim of our presented analysis is to identify the opinion expressed in the textual part
of a review. Our approach consists in comparing the two techniques on our corpus and design
a method to predict opinion (positive or negative).

PHAROS: Techniques and Algorithms for Social Media Page 54 Version 1.0

Figure 3.13: Flixster homepage (source www.flixster.com)

The NLP techniques are based on a dictionary issued from a manual selection of words re-
vealing opinions. We have tested two dictionaries: one is issued from a very general lexicon,
General Inquirer (containing 4207 words). The other dictionary (150 words) has been elabo-
rated from a frequency analysis of our own corpus: we have kept words appearing often and
attribute manually an opinion class; we have added an English words set already classified by
Stone et al. [98] and Kelly and Stone [99].

To analyze textual comments, we use a NLP tool named TiLT. TiLT (Traitements Linguistiques

de Textes) is a text analyzer developed within France Telecom R&D in the framework of NLP
research.

Textual corpus The textual corpus represents data to be analyzed. For us, textual corpus
is a set of movie reviews. Let us note that the English used is not the one we learn at school...
The reviews are very similar to forum messages. They present common characteristics such

PHAROS: Techniques and Algorithms for Social Media Page 55 Version 1.0

Figure 3.14: Page of movie (source www.flixster.com)

as:

• Accumulation of the punctuation: “”!!! ”

• Use of smiley: “ :-) ”

• Particular writing SMS type: “ ur ” , “ gr8 ” (“ your ” , “ great ”)

• words stretching: “ veryyyy coooool ”

One of the positives using TiLT is to help in resolving typos, understanding abbreviations,
smileys, and so on.

PHAROS: Techniques and Algorithms for Social Media Page 56 Version 1.0

Figure 3.15: Page of user (source www.flixster.com)

The text analyser TiLT

This tool articulates itself around a set of modules implementing the advanced techniques
of natural language processing (see figure ??). It has various functionalities which range
from language recognition (which determines choice of lexical, grammar etc.), then continues
with text cutting in increasingly fine elements, with lexical analysis and parsing to finish with
semantic analysis. As of now, eight languages are covered at different levels: French, English,
German, Spanish, Arabic, Polish, Portuguese and Chinese.

Rule Segmentation TiLT requires the following data during the segamenation: sentences
are cut out into segments according to segmentation rules which were indicated (which can
be points, commas, brackets . . .). Each segment is constituted of one type and one charac-
ter string. The type allows to direct posterior treatments carried on this segment. Here is an

PHAROS: Techniques and Algorithms for Social Media Page 57 Version 1.0

Figure 3.16: Data base of Flixster data

example of results of this step:

“ The company increased its figure by 1% ”
(WORD. “ The ”)(SPACE. “ ”)(WORD. “ company ”)(SPACE. “ ”)(WORD. “ increased ”

) (SPACE. “ ”)(WORD. “ its ”)(SPACE. “ ”)(WORD. “ figure ”)(SPACE. “ ”)(WORD. “ by

”)(SPACE. “ ”)(NUMBER. “ 1 ”)(PERCENT. “ % ”)

Each type of words or symbols (like “ % ”) are found using segmentation data, which are
obviously modifiable. This step result is independent of all grammatical concept or sentence
meaning.

Monolingual lexicon There exists one lexicon by language. Each lexicon is composed of
several data files indexing simple words and locutions in their canonical form. They com-
prise mainly morphosyntaxic information as identifiers of meaning which allow to do the bond
between the lexical entry contents on the lexicon and semantic data of thesaurus or as gram-
matical features.

Grammatical features A grammatical feature is a grammatical and linguistic indication al-
lowing to describe in details words of a language. Each word can have several grammatical
features that is why features generally depend on the context of the sentence. TiLT allows
to allot new grammatical features to words from lexicon.The analysis produces we can for

PHAROS: Techniques and Algorithms for Social Media Page 58 Version 1.0

example add opinion polarity to words carrying opinion.

Minimal analysis This step consists to apply to each identified segment a certain number
of actions, according to its type, in order to associate to it lexical interpretations which corre-
spond to it. With the precedent example, TiLT does not go in the lexicon strings which are
typified NUMBER or PERCENT, it uses to lexicon only for strings typified WORD. If a word
is unknown by the lexicon, different correction methods can be applied to it. In addition, a
morphological analysis mechanism can be also called to supplement word analyze or word
correction. It is important to notice that the use of correction methods on unknown word can
associate to a single segment multiple lexical forms.

The corrections applied for the project are:

• Phonetic correction

• Typographical correction

• Morphological correction

• MorphoPredictive correction

If one correction type gives a solution, further corrections are not applied.

Lemmatisation Lemmatisation is the process of determining the lemma for a given word.
The words of a language use several forms according to their grammatical gender (masculine
or feminine), their number (plural or singular), their grammatical person (you, he, she . . .),
their grammatical mood (subjunctive, indicative . . .) thus giving rise to several forms for a
same word. Lemmatisation of words is done in the following way:

• For a verb: the lemma is the bare infinitive

• For other words: the lemma is the word in the singular and masculine

For example, the verb “ to walk” may appear as “ walk” , “ walked” , “ walks” , “ walking” . The
base form, “ walk” , that one might look up in a dictionary. The sentence “ Depp’s films are

soooo funnyyyy, i adored them!” gives, after lemmatisation, “ depp ’s film be so funny , I adore

them” .

Chunking The chunking allows associating each word to a terminal. A terminal is a word
informing about the grammatical role. Some words may firing several terminals. For example,
the word “ love” can get terminals “ love/NOUN” and “ love/VERB” . The choice of the good
terminal is done according to the context of the sentence. With this labeling tool, we have the
possibility to study adverbs, verbs and adjectives separately.

PHAROS: Techniques and Algorithms for Social Media Page 59 Version 1.0

Dependency Analysis This analysis could be very interesting when we want to study
adverb-adjective combinations (Benamara et al. [45]). Syntactic analysis in dependence
allows to organize the words of the sentence previously cut out by analysis in chunking by
constituting word groups as nominal groups or verbal groups. It allows also to clarify relations
between words in these groups (subjects, complements etc.).

In TiLT, syntactic dependency analysis is represented in the form of tree (see figure 3.17).
The arborescent representation of the figure 3.17 allows us to see that the head of the phrase
is the conjugated verb (GV-PT) “ has” to which is attached a subject of personal pronoun
type (PRN-S) then a complement of object formed by a determinant (GN-DI) “a” and a noun
(GN-NC) “ problem”.

PHAROS: Techniques and Algorithms for Social Media Page 60 Version 1.0

R
Header Table

edge
name

edge
count

edge
head

<b1, b2>

<b2, b3>

<b2, b4>

3

2

2

b1

b2

b3

b2

b3 b4

[[1][6][2]]

[2]

[3] [3]

b4

[2]

Figure 3.17: Analysis in dependence of the phrase “ He has a problem”

Dependency Grammar allows to give complementary information for each analyzed element.
This information presents itself in form of morphological, syntactic and semantic grammatical
features, and can be used in rules of dependence allowing to constitute word groups.

Semantic analysis with the thesaurus The semantic treatment is the last link in the chain
of treatment. It concentrates information available in other modules to allow us to understand

the text entered in the analyzer. Semantic data are gathered in the thesaurus which interacts
with the lexicon to create predicates which will be used in semantic graphs. The thesaurus

PHAROS: Techniques and Algorithms for Social Media Page 61 Version 1.0

is a multilingual catalog of lexicons where the objective is to accumulate information on the
different meanings of words and on relations that maintain these meanings between them.

Our Proposed Opinion Mining Method

From our initial corpus, we keep a part for testing (30%), and use the rest to develop our
training model (70%). In order to build a dictionary, we used TiLT to show the words and their
frequency.

First, we classify each review according to its rating. We thus have created one file with all
reviews rated with 1 star, one file with reviews rated with 2 stars and so on. We lemmatise
each files and filtered words to be returned according to their grammatical category (Adjec-
tives, adverbs and verbs). We then classify manually terms according to the opinion that they
express and we have increase this list by using a synonyms dictionary (also manually). We
kept words expressing only one type of opinion.

We have classified 221 words in 11 classes that we have identified:

• Adverbs:

◦ Affirmation (absolutely, entirely, fully . . .)

◦ Doubt (possibly, apparently, seemingly . . .)

◦ Weak intensity (really, very, so, much . . .)

◦ Strong intensity (only, a little, nearly, barely . . .)

◦ Negation and minimizers (not, never, less, no . . .)

• Adjectives:

◦ Satisfaction (good, great, funny, awesome . . .)

◦ No satisfaction (bad, wicked, stupid, fucking, ugly . . .)

◦ Provisional satisfaction (specially, disturbing, surprising, special . . .)

• Verbs:

◦ Positive opinion (love, good mood, amaze, enjoy, recommend . . .)

◦ Negative opinion (hate, disturb, fuck, shit, dislike, overeat . . .)

◦ Provisional opinion (remember, feel, believe . . .)

In classes Provisional satisfaction and Provisional opinion, there are terms yielding opinions
not semantically sufficient, i.e. which cannot be determined by themselves if the opinion is
a positive or negative opinion. It is necessary to have other elements to determine opinion
polarity of these words. We will see afterwards how machine learning techniques can help
(see Sec. 3.3.2).

The next step of the analysis consists in marking the corpus. For each word in the corpus

PHAROS: Techniques and Algorithms for Social Media Page 62 Version 1.0

Figure 3.18: All steps for NLP approach

identified in the classified words set, the word class is added in the text (in a markup language
way). At this stage of our research, we have used only two marks, POS_OP for positive
opinion and NEG_OP for negative opinion, and also, we decided not to use adverbs which
accentuate opinion transmitted by adjectives, adjectives of provisional satisfaction and verbs
of provisional opinion.

The results are phrases of type: “ a <POS_OP>great<POS_OP> movie fill with all the <POS_OP>good<POS_OP>

thing you <POS_OP>like<POS_OP> !”

The last step consists in counting for each review, the number of marks POS_OP and NEG_OP

in order to give a rate to the review.

These steps are indexed in figure 3.18.

The next step is the application of dependency rules, grouping, for example, adjectives and
adverbs. Semantic interpretation of theses groups regarding expressed opinion has to be
done. For example, when an adverb of negation class is found, the opinion of adverb-adjective
combination is the reverse of the opinion expressed by the adjective which follows the adverb.
In order to improve the classification process of words we will try to integrate and fusion the
results of different methods stated in the state of art (see for example the study of adverb-
adjective combinations in Benamara et al. [45]).

Figure 3.19: Results of the NLP method using 2 different lexicons

The results on table 3.19 show too many reviews in which no firing-word had been detected.
We have to use a more exhaustive list of classified words according to expressed opinions.

PHAROS: Techniques and Algorithms for Social Media Page 63 Version 1.0

With positive reviews, our method predicts a positive rate with an accuracy of 70%. Special
improvements has to be made on the negative words.

In order to be more language-independent and more exhaustive, we show in the next section
that machine learning techniques help in discovering the informative words used in the reviews
and their associated expressed opinion.

3.3.2 Opinion analysis using machine learning techniques approach

For this machine learning techniques approach, we have done two distinct analysis. The first,
using a supervised algorithm, allows to find the most informative words in term of opinion min-
ing. For this analysis, we have used algorithms integrated in a tool named KHIOPS developed
by Boullé [100] at France Telecom R&D.

KHIOPS

KHIOPS is a tool allowing both supervised and unsupervised learning. It allows to perform
univariate and bivariate descriptive statistics, to evaluate the predictive importance of explana-
tory variables, to discretize continuous variables, to group the values of categorical variables,
to recode input data according to these discretization and value groupings.

This tools is used in the following way:

• The first step consists in building the dataset and choose the variables describing the
data. Variable may be a categorical (male/female for example) or continuous (a real
number). KHIOPS proposes an automatic layer discovering the variables after loading
the data to analyze. In our case, the data are the reviews, and the variables are the
presence/absence of each word extracted in the corpus. From this step, a database file
is built.

• The second step is to check the correctness of the database file. In this step, the tool
parses the database file and completely checks formatting or variable type errors.

• The third step, the most important, is to analyze the predictive value of the explanatory
variables or pairs of variables. In supervised analysis, a target variable must be specified
and KHIOPS evaluates the predictive importance (named “ level” in the results) of each
variables. The predictive importance of a variable is a rate. The higher the rate, the
better the variable allows to predict the target variable value. And conversely, more the
rate is low, less the variable allows to predict the target variable value. In unsupervised
analysis, there is no target variable specified and KHIOPS evaluates the correlation
between any pair of variables. In the supervised mode, our target variable is the rate
given by the review author.

PHAROS: Techniques and Algorithms for Social Media Page 64 Version 1.0

Film Notation great movie i loved it was awsome

Troy 5 1 1 1 0 0 0 0 0

Memoirs of a Geisha 5 0 0 2 1 1 1

The Bourne Identity 5 0 0 0 0 0 0

Crash (2005) 5 0 1 1 0 0 0 0

Pirates of the Caribbean 5 0 1 3 0 2

The Wedding Planner 5 0 0 2 0 1 0

Charlie and the Chocolate Factory 5 0 0 0 0

Tim Burtons Corps Bride 5 0 0 0 0 0

Underworld: Evolution 5 0 0 3 1 1

Freedomland 5 0 1 3 1 2 1 1

Angel Eyes 5 0 0 2 0 0 0 1

Figure 3.20: Part of file for supervised learning method

Learning methods: Supervised vs. Unsupervised

Supervised learning is a machine learning technique for creating a function from training
data. The training data consist of pairs of input objects (typically vectors), and desired outputs.
The output of the function can be a continuous value (called regression), or can predict a class
label of the input object (called classification). The task of the supervised learner is to predict
the value of the function for any valid input object after having seen a number of training
examples (i.e. pairs of input and target output)7.

For this method, KHIOPS uses the naive Bayes classification approach with selection of vari-
ables and average of models [101]. The supervised learning method consists, in our case, in
learning which variables, i.e. words, are significant to predict the rate of the comment.

For this method, KHIOPS takes in entry a file describing a matrix (see figure 3.20).

Each line of this matrix represents a review about the film quoted in the first column. The
second column contains rates of each reviews given by the author and to be predicted by the
algorithm. Other columns contain the number of occurrences of each word.

The result of the process is the selection of informative words associated to each rating. Those
informative words can then be used by the NLP process to classify a text in a rating set. By
finding the informative words, KHIOPS builds a internal model up to classify new reviews.

The first experiment used 5389 reviews with 7087 different words. 70% have been used to
train the classifier and 30% for the evaluation. On this dataset, KHIOPS selected 36 informa-
tive words. But results show that each word taken separately does not bring much information,
and thus would not be so relevant to add to the NLP dictionnay. This statement explains the
quite low classification accuracy (53%) obtained on the evaluation dataset.

As a first conclusion, we state that more data is required for better results (to get much more
words and then extend the vector describing the reviews). For our first analysis, reviews were
rated in 5 categories ([0, 1, ..., 5]). After splitting the reviews into two categories (Reviews with
a rate higher or equal to 3 are positive, others are negative), results are improved (see Table

7Source: '��� (���� �� �� ������ �	
��� �� ��2���
��������
� ���

PHAROS: Techniques and Algorithms for Social Media Page 65 Version 1.0

http://en.wikipedia.org/wiki/Supervisedlearning

Figure 3.21: Results of our supervised learning method

Rank

Variable

R0002

Continuous love

Discretization

Value

]-inf; 0.5[

[0.5; inf[

Total

1 2 3 4 5 Frequency

0.0411728

0.00689655

0.0374838

0.0499064

0.0137931

0.0460197

0.130381

0.0603448

0.122843

0.299231

0.213793

0.290035

0.478894

0.705172

0.503247

4809

580

5389

Figure 3.22: Statistics of the word “ love”

3.21), and we reach an accuracy of 91,5%.

Here is the list of the 36 most informative words, i.e. those which allow to predict a rate. They
are listed from the more informative to the least one:
best, stupid, worst, ok, my, hated, okay, freak, word, inte, looks, love, so, seen, pretty, its, ever,

loved, gr8, c, make, this, needs, such, picture, censored, babes, hop, tryin, bitching, moviee,

each, married, kill, hip, breasted

For each informative word, KHIOPS returns detailed statistics. It gives the percentage for
which the word is present or not in reviews rated one star, in reviews rated two stars and so
on. For example, we can see that for all reviews where the word “love” is present, 70.5%
had been rated five stars, 21.4% had been rated four stars, 6% had been rated three stars,
1.4% had been rated two stars and 0.7% one star (see figure 3.22. We can thus say that a
review containging “ love” has got more than 9-in-ten chances to be positive (three, four or five
stars)(see the red framework on Fig. 3.22).

We conducted another experiment with 70, 000 reviews but processing time is much longer
and KHIOPS is not adapted to the huge volume of variables describing the data (i.e. 90
000 words). KHIOPS has been designed for classical data mining analysis where data are
described with few variables (e.g. salary, age etc.). Here, we face a text mining problem
involving many descriptors. Thus, our second series of tests was not conclusive. But this
experience shows us that bigger the dataset is, more informative words will be found, and
more relevant they will be.

3.3.3 Conclusion and perspectives

First results of our experiments are encouraging but many problems still have to be solved.

The main problem is the data quantity. KHIOPS can not treat a corpus with 70,000 reviews.

PHAROS: Techniques and Algorithms for Social Media Page 66 Version 1.0

To reduce the matrix (i.e. the number of the words describing each review), we can lemmatise
the corpus, and correct many spelling mistakes and word abbreviations with TiLT. For example
words as “ cooool” , “ Cool” , “ kool” can be reduced to the single word “ cool” . Applying
lemmatisation by using NLP techniques reduce drastically the number of words to take into
account.

The state of the art in Opinion prediction shows that combining Natural Language Process-
ing techniques and Machine Learning techniques offer the best results. With the method
and the tool used in our experiment, we can conclude that to predict the sentiment polarity
(positive or negative opinion) regarding a textual comment about a movie, a supervised learn-
ing tool based on Naive Bayesian algorithms reach more than 91% of accuracy without any
pre-treatment on the textual corpus.

We are therefore confident that NLP tools are necessary to improve the results:

• to lemmatise and go beyond the volume barrier: to train the machine learning algorithms
with a greater lexicon (with 70,000 reviews, we count more than 90,000 different words),

• to clean the corpus and remove syntactic liberties users take when they write comments
on multimedia content,

reduce the volume of variables

We still have to test if machine learning techniques, by stressing the informative words, can
improve the NLP method consisting in counting opinion words and defining an heuristic to
classify a review into a positive or negative class. The dictionary we used has been manually
done, adding the informative words may offer better results to the NLP method. But this
method, more complicated to use, is language dependent, which is not the case for our ML
method.

In a different perspective of research, such as “ understand how” people like or dislike a
movie, “ what or why ” they like or dislike a movie, then, machine learning will be use-
less. NLP ones, by analyzing the structure of the sentence will catch patterns such as “
<POS_OP>love/VERB<POS_OP> the image quality/OBJECT ”.

Finally, in the context of recommendation problems, our work can be used to label social
networks with opinion. Our ML method is accurate enough to get precise opinion communities
of people sharing the same interests in movies. By analyzing the metadata describing those
movies, we will be able to generalize knowledge, and for example, learn what is common in
the films appreciated by Johnny deep’s films, beyond the easy deduction that his presence
is enough. Such studies will converge to fine communities profiles and fine recommendation
taking into account polarity of opinion.

PHAROS: Techniques and Algorithms for Social Media Page 67 Version 1.0

4 Algorithms For Personalization and

Recommendation

4.1 Using User Generated Metadata For Music Recommendation

More and more companies start offering personalized services toward their users and online
music recommender systems are one prominent example. Pandora1, Last.fm2, Foafing the
Music3 or Yahoo! Music4 are a few of the currently online available music recommendation
systems. These systems employ different approaches for recommending music tracks to their
users, ranging from content based and collaborative filtering techniques to hybrid methods.
While clearly useful to their users, these more conventional recommendation techniques still
suffer from a number of problems: in the case of collaborative filtering, musical pieces with no
ratings cannot be recommended because recommendations are based on actual user ratings.
Besides, artist variety in recommended pieces can be poor, making these recommendations
less satisfactory than they could be. Recommending tracks that are similar to users’ favorites
in terms of content induces unreliability in modeling users’ preferences and besides, content
similarity does not necessarily reflect preferences. Hybrid recommendation techniques com-
bine the advantages of the two approaches and are thus better. However, to our knowledge,
the only usable music recommender system using hybrid techniques is Foafing the Music,
which relies heavily on FOAF profiles created by the users - not an easy task for non-expert
users. Last, but not least, though many of these community sites allow tagging, these tags
are not used for recommendation or any form of advanced search.

4.1.1 Related Work

Most available music recommender systems are based on collaborative filtering methods;
i.e., they recommend music to a user by considering some other users’ ratings for the same
music pieces. This technique is quite widely utilized, including music shopping services like

1http://www.pandora.com/
2http://www.last.fm/
3http://foafing-the-music.iua.upf.edu/
4http://music.yahoo.com/

PHAROS: Techniques and Algorithms for Social Media Page 68 Version 1.0

Amazon5 or iTunes6, and has proven to be effective. However, this recommendation method
suffers from the cold start problem.

A better recommendation technique is described in [102]. The paper gives an overview of the
Foafing-the-Music system, which uses the Friend-of-a-Friend (FOAF) and Rich Site Summary
(RSS) vocabularies for recommending music to a user, depending on her musical tastes. Mu-
sic information, such as new album releases, related news artists, or available audio pieces,
is gathered from RSS feeds from the Web, whereas FOAF documents are used to define
user preferences (i.e., for building the user profiles). Another hybrid music recommendation
method is presented in [103], which simultaneously considers user ratings and content simi-
larity and is based on a three-way aspect model, so that it can directly represent substantial
(unobservable) user preferences as a set of latent variables introduced in a Bayesian net-
work. Probabilistic relations over users, ratings, and contents are statistically estimated. Our
approach differs from these previous ones by the fact that the user profile is inferred automat-
ically from his desktop music data without any additional manual effort from the user’s side,
and that we rely on tag information instead of track-based profiles.

A totally different approach for producing music recommendations is presented in [104]. Their
method is applied to an interactive music system that generates playlists fitting the preferences
indicated by the user. For automatically generating music playlists, their approach uses a
local search procedure in the solution space, based on simulated annealing: the algorithm
iteratively searches the solution space moving from one solution to a neighboring solution,
compares their quality and stops when an optimal solution is found.

[105] describes a system that queries web search engines for pages related to artists, down-
loads the pages, extracts text and natural language features, and analyzes these features in
order to produce textual summary descriptions of each artist. These descriptions are used
to compute similarity between artists and can be further used for producing recommenda-
tions. However, the paper does not present any evaluation experiments regarding the quality
of the recommendations received by using this technique. Also, our approach differs from the
one presented in [105] by the fact that they are searching the web for finding similar artists,
whereas we rely on user tags (in particular from the Last.fm web site) for grouping tracks and
artists and for building up user profiles.

The most similar approach to ours is [106], which uses collaboratively created data from the
Web for making recommendations. However, their goal is generating personalized tag rec-
ommendations for users of social bookmarking sites such as Delicious7. Techniques for rec-
ommending tags do already exist and are based on the popularity of tags among all users,
on time usage information, or on simple heuristics to extract keywords from the URL being
tagged. Their approach complements these techniques and is based on recommending tags
from URLs that are similar to the one in question according to two variants of cosine similarity
metrics. We use tags as well, but use them for recommending interesting songs based on
tag-based profiles.

5http://www.amazon.com/
6http://www.apple.com/itunes/
7http://del.icio.us/

PHAROS: Techniques and Algorithms for Social Media Page 69 Version 1.0

4.1.2 Tag-Based Profiles vs. Track-Based Profiles

Tags are more and more widely used, which makes it easier to extract them for all types of
information objects, including music tracks. We chose to extract available human annotations
(tags) from Last.fm tracks or directly use those tags that the users applied themselves to other
tracks or artists. Although most music recommendation methods use track-based algorithms
to present the user with new interesting tracks, given the increasing tendency toward tagging
all types of multimedia files on the Internet we wanted to investigate how these tags could be
used for recommendations. We also wanted to avoid extensive manual ranking, so opted to
construct user profiles from locally stored MP3 files. This usually works very well, as most
users have quite a few music files in MP3 format on their desktop, usually much more than
needed for a music recommender system to provide satisfactory results.

For the rest of this section, we will distinguish between profiles created for Last.fm users
and for Non-Last.fm users. They differ in terms of the source of information which is used
for building up the profiles: for Last.fm users the starting point is represented by their web
pages on Last.fm, whereas in the case of the Non-Last.fm users we start from the information
available on their desktops. For this type of users we extract metadata about each track
existing on the desktop, and match artist and track name (extracted from filename or ID3
tag) against the Last.fm music database. This, as we will show in section 4.1.4 provides
all data necessary to create comprehensive user profiles that accurately reflect users’ music
preferences. We will use the following notations:

ITF (TG) = Inverse Tag Frequency for Tag TG

p(TR, U) = Preference of User U for Track TR

p(TG, U) = Preference of User U for Tag TG

TR_U_Listened = Number of times User U has listened to Track TR

TR_Overall_Listened = Number of times Track TR was overall listened on

Last.fm

TG_UsedFor_TR = Number of times Track TR was tagged with Tag TG by

all users

TG_Used_Overall = Number of times Tag TG was used overall

TG_UsedBy_U = Number of times User U has used Tag TG

Tracks_Containing_TG = Number of tracks on the User’s Desktop that were

tagged with Tag TG

We distinguish between Last.fm and Non-Last.fm users using either Last.fm or Non-Last.fm

indices in the corresponding formulas.

PHAROS: Techniques and Algorithms for Social Media Page 70 Version 1.0

4.1.3 Track-based Profiles

Track-based profiles are defined as collections of music tracks with associated preference
scores, describing users’ musical tastes, as follows:

Profile_Tracks(U) =
{< TRi, Pi > | TRi =user’s track, Pi = p(TRi, U)}

Track-based profiles for Last.fm users

In the case of Last.fm users the profiles are inferred from the users’ web pages available on
the Last.fm site. Their collection of tracks includes all tracks the users have been listening to
inside the system. Their associated scores are a function of the number of times users have
listened to these music tracks. The algorithm for creating the track-based profiles for this type
of users is described below:

Alg. 4.1.3.1: Track-based profile for Last.fm user

1: For each track TR in user’s tracks list UTR
2: Compute track’s score P
3: Add pair < TR, P > to user profile
4: Return user’s track-based profile

with P = p(TR, ULast.fm) = log(TR_ULast.fm_Listened)

Track-based profiles for Non-Last.fm users

For Non-Last.fm users the only available source of personal information is represented by
their desktops. We first extract explicit metadata such as artist and track name either from the
filename or from the ID3 tags (if any) of the music files existing on the desktop. This information
is then matched against the Last.fm database and only tracks with a TFxIDF score above 0.9
are kept for further processing. This pre-processing step is described below:

Alg. 4.1.3.1: Get list of tracks

1: For each track (MP3) on user desktop
2: Extract artist name and track name from filename as S1

3: Extract artist name and track name from ID3 tag as S2

4: Combine S1 and S2 into S

5: Search with S on Last.fm index
6: Retrieve tracks LT matching query with Lucene TFxIDF score >0.9
7: Add tracks LT to the user’s list of tracks UTR
8: Return UTR

PHAROS: Techniques and Algorithms for Social Media Page 71 Version 1.0

Once the list of tracks for a Non-Last.fm user is created, the track-profile is realized in a similar
manner as for a Last.fm user: algorithm 4.1.3.1 is applied on the list of tracks with the only
difference that the preference scores for the tracks are now a function of the overall number
of times tracks have been listened on Last.fm.

Alg. 4.1.3.2: Track-based profile for Non-Last.fm user

1: Create list of tracks UTR applying Alg. 4.1.3.1

2: Apply Alg. 4.1.3.1 on list of tracks UTR

with P = p(TR, UNon−Last.fm) = log(TR_Overall_Listened)

4.1.4 Tag-based Profiles

Tag-based user profiles are defined as collections of tags together with corresponding scores
representing the user’s interest in each of these tags. The formal definition is given below:

Profile_Tags(U) =
{< TGi, Pi > | TGi =user’s tag, Pi = p(TGi, U)}

Again, we distinguish between profiles created for Last.fm and non-Last.fm users. For this
type of profiles, the list of tags can be extracted either from the users’ list of tracks (tags which
have been used to tag the tracks) or directly from the tags the users have used themselves.
The different variants of tag-based profiles for Last.fm and Non-Last.fm users are described
in detail in Sections 4.1.4 and 4.1.4.

Tag-based profiles for Last.fm users

For Last.fm users, the first type of tag-based profiles can be created starting from the list of
tracks the users have been listening to on Last.fm. For each of these tracks, we extract the
list of all tags which have been used inside the system for annotating them. In this case, the
preference associated to a tag is proportional to the number of times these tracks tagged as
TG were listened by the user and to the number times this tag has been used by all users on
Last.fm to tag those tracks. The description of the algorithm is given below:

Alg. 4.1.4.1: Track-Tag-based Profile for Last.fm User

PHAROS: Techniques and Algorithms for Social Media Page 72 Version 1.0

1: For each track TR in user’s track list UTR
2: Extract list of used tags TTG for TR
3: Add TTG to user’s tag list UTG
4: For each tag TG in UTG
5: Compute tag’s score P
6: Add pair < TG, P > to user’s profile
7: Return user’s tag-based profile

with P = p(TG, ULast.fm) = [ITF (TG)]·
log 3 i(log(TRi_ULast.fm_Listened) · log(TG_UsedFor_TRi))

ITF (TG) = log 4i
TGi_Used_Overall

TG_Used_Overall

Similar to the IDF value in Information Retrieval, in order to reduce the influence of tags which
are very popular among users, but might not accurately reflect user’s personal musical taste,
we introduce an optional parameter in the preference formula, ITF . The formula penalizes
tags which appear very often and boosts the preference for tags appearing more rarely.

The second possibility for creating the tag-based profiles for Last.fm users is to directly take
the tags which the users have already used (information which can be found on their web
pages) together with their frequency. The algorithm in this case looks as follows:

Alg. 4.1.4.2: Tag-based Profile for Last.fm User

1: For each tag TG in user’s tag list UTG
2: Compute tag’s score P
3: Add pair < TG, P > to user’s profile
4: Return user’s tag-based profile

with P = p(TG, ULast.fm) = log(TG_UsedBy_ULast.fm)

For this case, we do not need to introduce the ITF parameter in the preference formula, since
now the profile is already very personalized – the user has directly used these tags.

Tag-based profiles for non-Last.fm users

For non-Last.fm users, the collection of tags building up their profiles is inferred based on the
list of tracks the users have on their desktops. This list of tracks is compiled as presented in
Alg. 4.1.3.1 and then transformed using Alg. 4.1.4.1. Preference scores for the tags are now
computed as follows: the score depends on the number of times these tracks which are part
of the users’ profile and are tagged as TG have been listened by all Last.fm users and to the
number times this tag has been used by all users on Last.fm. Again in the formula we have
the optional parameter ITF used to decrease the bias towards very popular tags. Moreover,
for Non-Last.fm users we keep in the profile only the top 100 preferred tags, after evaluating
recommendation results with several such values for this algorithm ranging from 10 to 500.

PHAROS: Techniques and Algorithms for Social Media Page 73 Version 1.0

Alg. 4.1.4.1: Track-Tag-based Profile for Non-Last.fm User

1: Create list of tracks UTR applying Alg. 4.1.3.1

2: Apply Alg. 4.1.4.1 on list of tracks UTR
3: Retain in the profile top 100 preferred tags
4: Return user’s tag-based profile

with P = p(TG, UNon−Last.fm) = [ITF (TG)]·
log 3 i(log(TRi_Overall_Listened) · log(TG_UsedFor_TRi))

ITF (TG) = log 4i
TGi_Used_Overall

TG_Used_Overall

The second variant of the tag-based profile corresponding to a Non-Last.fm user looks similar
to the previous one. In this case the preference depends on the number of tracks on the user’s
desktop that are tagged with tag TG.

Alg. 4.1.4.2: Tag-based Profile for Non-Last.fm User

1: Create list of tracks UTR applying Alg. 4.1.3.1

2: Apply Alg. 4.1.4.1 on list of tracks UTR
3: Retain in the profile top 29 preferred tags
4: Return user’s tag-based profile

with P = p(TG, UNon−Last.fm) = log(Tracks_Containing_TG)

Since Non-Last.fm users did not use the tags building up their profile by themselves — they
are just inferred based on the music tracks they have on their desktop — we chose to simulate
the Last.fm profiles by maintaining only the top 29 preferred tags. From the data we have
crawled we could see that the average number of used tags among the users is 29, therefore
we keep in the tag-profiles we create with algorithm 4.1.4.2 only top-29 most preferred tags.

4.1.5 Music Recommendations

Using track-based and tag-based profiles we implemented and evaluated different algorithms
for producing music recommendations. This section describes 7 algorithms which, based on
the type of profile and the technique we used for getting the recommendations, can be grouped
into three categories: Collaborative Filtering based on Tracks (Section 4.1.6), Collaborative
Filtering based on Tags (Section 4.1.7) and Search based on Tags (Section 4.1.8).

PHAROS: Techniques and Algorithms for Social Media Page 74 Version 1.0

4.1.6 Track-based Recommendations

CF based on TRacks (CFTR). Traditional music recommender systems use User-Item Col-
laborative Filtering methods with music tracks as items. This method is successfully used in
Last.fm and other systems, though we still have the cold start problem, i.e. users have to
listen (and possibly rank) a minimum number of tracks and tracks have to be ranked by some
listeners, before recommendations are possible. We will use such an algorithm as baseline to
compare our other algorithms against.

Alg. 4.1.6.1: Collaborative Filtering based on Tracks (CFTR)

Track Profile ↪→ Track Recommendation ↪→ Tracks

1: Create users track-based profile (Alg. 4.1.3.1/ Alg. 4.1.3.1)
2: Get track recommendations based on the Taste-Recommender Java library:
3: Compute top 10 most similar users SU with current user U

based on cosine similarity between track profiles
4: For each similar user SUi

5: Get tracks TRj with preference p(TRj , SUi)
6: Combine lists TRj of tracks into ⇒ RTR
7: Recommend music tracks RTR

4.1.7 Tag-Based Recommendations

For the three algorithms proposed in this paper as tag-based recommendation algorithms,
the matrix on which we apply collaborative filtering is a User-Tag matrix. In this matrix, line
i corresponds to the tag-profile of user i and contains corresponding preference scores for
tags which have been used by the user (and 0 for the other tags). In these algorithms what
we obtain as result of applying CF on the User-Tag matrix is of course a list of recommended
tags, based on what tags other similar users have used. What we want to achieve are music
recommendations and not tag recommendations. Therefore with this list of tags we search
which tracks have been tagged with most of these tags, taking into account their associated
preference scores. We return the top 10 matching tracks, scored by cosine similarity, as
recommended songs.

CF based on Track-Tags with ITF (CFTTI). The first algorithm we propose in this category
uses tag-based profiles which have been extracted from the list of tracks users have been
listening to (Alg. 4.1.4.1/ Alg. 4.1.4.1). For not biasing profiles towards highly used tags, when
computing preference scores associated to the tags we also include the ITF parameter. The
recommended list of tags obtained after applying CF on the User-Tag matrix is then used for
getting the music recommendations:

Alg. 4.1.7.1: CF based on Track-Tags with ITF (CFTTI)

PHAROS: Techniques and Algorithms for Social Media Page 75 Version 1.0

Tracks ↪→ Tag Profile ↪→ Tag Recommendation ↪→ Search w/ Tags ↪→ Tracks

1: Create tag-based profiles (Alg. 4.1.4.1 / Alg. 4.1.4.1 both with ITF)
2: Get tag recommendations based on the Taste-Recommender Java library:
3: Compute top 10 most similar users SU with current user U

based on cosine similarity between tag profiles
4: For each similar user SUi

5: Get top 50 tags TGj by preference p(TGj , SUi)
6: Combine lists TGj of tags into ⇒ RTG
7: Create Query Q
8: For each tag TGi in RTG
9: Add pair < TGi, p(TGi, U) > to Q
10: Search with Q tracks being tagged with tags in Q ⇒ RTR
11: Compute cosine similarity between tracks in the Lucene index and Q
12: Rank resulted tracks RTR based on cosine similarity
13: Recommend music tracks RTR

CF based on Track-Tags No-ITF (CFTTN). This second algorithm differs from CFTTI by
computing the tag-based profiles without the ITF parameter in the formula corresponding to
tags’ preference. Otherwise the steps in the algorithm are the same as in Alg. 4.1.7.1.

CF based on Tags (CFTG). For the third algorithm the user profiles on which the tag rec-
ommendation step is based, are more personal – users have already used those tags. In this
case, line 1: in Alg 4.1.7.1 is modified and the algorithm looks as follows:

Alg. 4.1.7.3: CF based on Tags (CFTG)

Tags ↪→ Tag Profile ↪→ Tag Recommendation ↪→ Search with Tags ↪→ Tracks

1: Create tag-based profiles (Alg. 4.1.4.2 / Alg. 4.1.4.2)
2: Get tag recommendations based on the Taste-Recommender Java library:
3: Compute top 10 most similar users SU with current user U

based on cosine similarity between tag profiles
4: For each similar user SUi

5: Get top 50 tags TGj by preference p(TGj , SUi)
6: Combine lists TGj of tags into ⇒ RTG
7: Create Query Q
8: For each tag TGi in RTG
9: Add pair < TGi, p(TGi, U) > to Q
10: Search with Q tracks being tagged with tags in Q ⇒ RTR
11: Compute cosine similarity between tracks in the Lucene index and Q
12: Rank resulted tracks RTR based on cosine similarity
13: Recommend music tracks RTR

4.1.8 Tag-Based Search

In our last set of algorithms, we use the tags extracted through the previously presented
methods for direct matching with other tracks. This is done by creating a disjunctive query of

PHAROS: Techniques and Algorithms for Social Media Page 76 Version 1.0

clauses where each clause consists of a tag and its preference. The results are tracks ordered
by cosine similarity between the vector of tags they have been tagged with and the vector of
tags given in the query. Direct search using tags has the big advantage of being much faster
than any collaborative filtering algorithm, the results being produced instantly. It also offers the
user the possibility to enter keyword queries based on tags and get new tracks from different
domains if wanted.

Search based on Track-Tags with ITF (STTI). Similar to CFTTI this algorithm is based on
profiles created using the algorithms 4.1.4.1 and 4.1.4.1 and includes the ITF factor in the
preference formula:

Alg. 4.1.8.1: Search based on Track-Tags with ITF (STTI)

Tags ↪→ Tag Profile ↪→ Search with Tags ↪→ Tracks

1: Create tag-based profiles (Alg. 4.1.4.1/ Alg. 4.1.4.1 both with ITF)
2: Create Query Q
3: For each tag TGi in the profile of current user U
4: Add pair < TGi, p(TGi, U) > to Q
5: Search with Q tracks being tagged with tags in Q ⇒ RTR
6: Compute cosine similarity between tracks in the Lucene index and Q
7: Rank resulted tracks RTR based on cosine similarity
8: Recommend music tracks RTR

Search based on Track-Tags No-ITF (STTN). The second search-based algorithm is based
on Alg. 4.1.8.2, just that we remove the ITF parameter in the preference formula.

Search based on Tags (STG). Like the CFTG algorithm, STG uses profiles created by alg.
4.1.4.2 and 4.1.4.2. Tags contained in the profiles are then directly used for searching for
tracks which have been tagged with these tags:

Alg. 4.1.8.3: Search based on Tags (STG)

Tags ↪→ Tag Profile ↪→ Search with Tags ↪→ Tracks

1: Create tag-based profiles (Alg. 4.1.4.2/ Alg. 4.1.4.2)
2: Create Query Q
3: For each tag TGi in the profile of current user U
4: Add pair < TGi, p(TGi, U) > to Q
5: Search with Q tracks being tagged with tags in Q ⇒ RTR
6: Compute cosine similarity between tracks in the Lucene index and Q
7: Rank resulted tracks RTR based on cosine similarity
8: Recommend music tracks RTR

PHAROS: Techniques and Algorithms for Social Media Page 77 Version 1.0

Nr. Algorithm NDCG Signif. vs. CFTR Popularity Novelty

1 CFTR 0.54 - 15,177 1.39

2 CFTG 0.25 High, p � 0.01 4,065 1.83

3 CFTTI 0.36 High, p � 0.01 6,632 1.72

4 CFTTN 0.37 High, p � 0.01 13,671 1.74

5 STG 0.60 No, p = 0.22 7,587 1.07

6 STTI 0.73 High, p � 0.01 10,380 0.82

7 STTN 0.77 High, p � 0.01 16,309 0.78

Table 4.1: Normalized Discounted Cumulative Gain over the first 10 recommended tracks,
along with the average track popularity and average novelty

4.1.9 Evaluation & Results

We evaluated our algorithms with 18 subjects which had to provide two different scores: one
measuring how well the recommended track matches their music preferences and one reflect-
ing the novelty of the track. The quality of the recommended results was measured using the
normalized version of Discounted Cumulated Gain (DCG) [107].

Table 4.1 shows the NDCG value, its statistical significance over the CFTR baseline com-
puted using T-tests, and the average popularity (number of times a track was listened to on
Last.fm) of recommended tracks for each algorithm. All Collaborative Filtering algorithms
based on tags (CFTG, CFTTI, CFTTN) performed worse than the baseline, as standard
User-Item CF techniques already show high precision. All our search algorithms, though,
show quite substantial improvements over track based CF (STG 12%, STTI 37%, STTN
44% as shown in Figure 4.1; STTI and STTN both highly statistically significant). This
outcome is certainly positively influenced by the consistent usage of tags on Last.fm: Most
frequently used tags denote the track’s genre, so our search gets biased towards specific
user preferred music genres. It was also interesting to note that the better people knew the
tracks (i.e., a lower novelty value), the higher they rated the recommendations. We observed
an almost perfect inverse correlation between these two scores, with a Pearson’s correlation
coefficient between average NDCG and Novelty values per algorithm of c = −0.987, and still
a high inverse correlation of all preference and novelty marks with c = −0.513.

Another interesting result is that STG recommends much less popular tracks than our CFTR
baseline, but still of higher quality, so that it is suited for people demanding a higher diversity
of music, not listening to the same tracks over and over again. We can thus suggest different
algorithms, depending on the user’s preference concerning popularity and novelty of tracks.
Because of the high use of the “rock” tag (used twice as much as any other tag), many hard

rock or heavy metal songs were recommended, mostly by tag-based CF algorithms. Further
research has to be done in order to disambiguate tag meanings, and to reduce unwanted tag
weights.

PHAROS: Techniques and Algorithms for Social Media Page 78 Version 1.0

Nr. Algorithm NDCG Signif. vs. CFTR Popularity Novelty

1 CFTR 0.60 - 19,717 1.33

2 CFTG 0.29 Yes, p = 0.02 7,787 1.84

3 CFTTI 0.33 Yes, p = 0.02 9,970 1.79

4 CFTTN 0.32 High, p � 0.01 25,576 1.77

5 STG 0.55 No, p = 0.29 7,799 1.11

6 STTI 0.76 Minimal, p = 0.10 10,709 0.81

7 STTN 0.80 Minimal, p = 0.07 15,664 0.61

Table 4.2: Normalized Discounted Cumulative Gain, average track popularity, and average
novelty over the first 10 recommended tracks, only for users with less than 50 tracks
on their Desktop

Nr. Algorithm NDCG Signif. vs. CFTR Popularity

1 CFTR 0.31 - 22,766

2 CFTG 0.19 No, p = 0.21 4,852

3 CFTTI 0.24 No, p = 0.42 5,758

4 CFTTN 0.29 Minimal, p = 0.13 17,419

5 STG 0.27 No, p = 0.25 21,111

6 STTI 0.26 No, p = 0.36 29,196

7 STTN 0.35 No, p = 0.25 44,490

Table 4.3: Normalized Discounted Cumulative Gain and average track popularity over the first
10 recommended tracks, only for items with high novelty

When looking only at people with less than 50 personal music tracks on their desktop (Table
4.2) - this was the case for 7 of our test subjects, the number of tracks ranging from 17 to 48
and averaging at 31 - we still find a gain of 26% and 33% over the baseline for STTI and
STTN , respectively. This indicates that our user tag profiles also work with less rich music
repositories. Results presented in Table 4.3 only for recommended tracks with high novelty
(i.e., novelty mark = 2), show a decrease in NDCG for all algorithms, mostly not statistically
significant since users had different music knowledge. Still STTN performs 13% better than
CFTR, mainly because it recommends tracks with higher popularity.

PHAROS: Techniques and Algorithms for Social Media Page 79 Version 1.0

Figure 4.1: Relative NDCG gain (in %) over the CFTR baseline for each algorithm.

4.2 Personalized Ranking using LSI

Since Latent Semantic Analysis (LSA) has been proposed in 1990 [64] plenty of research
papers explored different aspect of LSA8. The idea behind LSA is the substitution of the term-
document matrix by a low-rank matrix approximation. By reducing the rank of the matrix,
we limit the number of underlying latent variables or concepts and remove noisy data. Ex-
periments proved that this low-rank representation improves the quality of document ranking
and clustering. The potential use of LSA is hindered by its computational complexity. The
core of the method is the well–known Singular Value Decomposition (SVD), which compu-
tation is very expensive for large matrices. The modern clustering and ranking applications
operate on matrices with millions of rows and columns and it can take weeks to perform SVD
with such volumes of data, set aside the unrealistic memory requirements. The Web data
changes rapidly and LSA must be updated reasonably often. Moreover, the new personal-
ization techniques, which apply a user-specific profile to adjust ranking for a particular user,
require precomputation of LSA for every user. The efficient method for SVD computation can
improve result quality for the state-of-art search services. In this work we explore different
ways to scale SVD computation to large matrices and personalize its computation based on
the user profile.

4.2.1 Singular Value Decomposition (SVD)

So far we were discussing the high-level properties of SVD, now we would like to provide
some more details on it. The SVD method stems from one of the basic theorems in linear
algebra. Consider a real matrix Am×n

k with m rows, n columns, and a rank k. The theorem
says that there exist two orthonormal matrices U ∈ R

m×k?

, V ∈ R
n×k?

and a diagonal matrix
Σk∗×k∗

= diag(σ1, . . . , σk?) with two following properties:

σ1 ≥ σ2 ≥ · · · ≥ σk? > 0, and (4.1)

A = UΣV T. (4.2)

8In the information retrieval, it is also referred to as Latent Semantic Indexing (LSI).

PHAROS: Techniques and Algorithms for Social Media Page 80 Version 1.0

The formula Eq.4.2 is essentially an SVD. Let us denote the i-th columns of U and V by ui

and vi. Then SVD can be re-written as follows:

A =

k?
∑

i=1

uiσiv
T
i . (4.3)

The vectors ui and vi are called the i-th left and right singular vector of A, and associated
σi is called i-th singular value of A. SVD is unique if and only if all singular values are
different. SVD is commonly used for a low-rank approximation of A. Consider a rank k
such that 1 ≤ k ≤ k? and two modified matrices Um×k

k and V n×k
k with extra right columns

removed. The matrix with singular values is also reduced to Σk := diag(σ1, . . . , σk). It can
be proved that Ak := UkΣkV

T
k is an optimal rank-k least squares approximation of A or more

formally:

Ak = arg min
X∈R

m×n,
rank(X)≤k

|A − X|F, (4.4)

where, Xm×n
k is an arbitrary matrix of rank lower or equal to k and F is the Frobenius norm.

An approximation error can be also expressed using the singular values only:

|A − Ak|F =

√

√

√

√

k?
∑

i=k+1

σ2
i . (4.5)

4.2.2 Latent Semantic Analysis

Now we elaborate a bit more on LSA method in application to information retrieval. LSA takes a
low-rank approximation of the term-documents matrix, reducing the number of latent concepts
in the document collection and improving document search and classification.

SVD is a main machinery behind LSA, which takes as an input a real term-document matrix
Am×n

k built from m terms and n documents. The actual values within the matrix depend on
a particular weighting and normalization scheme applied to term statistics like term counts in
a particular document, term counts in the whole collection, document length, etc. The triples
(ui, σi, vi) can be seen as latent concepts or topics like “sport", “arts", etc. The intuition be-
hind the method is that by reducing “weakly represented" topics with small singular values, we
remove noise from the matrix and reinforce existing strong connections between topics, terms
and documents. One has to empirically select the desired number of latent concept k (usu-
ally between 300 and 1000) and SVD returns a low-rank approximation Am×n

k of the original
matrix. The method is effective for numerous information retrieval tasks but computationally
expensive and non-scalable.

PHAROS: Techniques and Algorithms for Social Media Page 81 Version 1.0

4.2.3 Personalized VLSI

One of the recent techniques from [82] is called Variable Latent Semantic Indexing (VLSI).
The proposed method achieves the same approximation quality as LSI with about 10 times
less concepts selected. The intuition is that it gives a control over the noise reduction process
so that we can reinforce the user-related concepts and preserve them from removing. Still, the
exact effect of such a transformation is not yet well-explained and is a topic for future research.

Let us denote a query vector Q ∈ R
n as a random vector combined from all queries of a

single user. The distribution of values within Q reflects user’s search preferences. Such
queries can be recorded in server logs and connected with the signed in user to create the
user’s query history. Now we can incorporate user’s preferences into the approximation task
and re-formulate a minimization problem presented in Eq.4.4 as minimization of the following
expression:

E
(

∣

∣(A − X)Q
∣

∣

F

)

, (4.6)

over all matrices X ∈ R
m×n of rank at most k as in original LSI. Now consider a matrix

Cn×n
Q := E

(

QQT
)

is a co-occurrence matrix of Q. The Cn×n
Q is symmetric since

(

QQT
)T

=

QQT. The intuition behind the so-constructed covariance matrix is that it captures the dimen-
sions of the index most relevant to a user and assigns a magnitude to the co-occurance of
query terms. For example, if the user searches for sport related material very often, terms
such as match, goal, footbal, tennis, ace, result, draw etc will occur very often and can be
mapped into the sport-related dimension of the index; parts of the index belongin to unrealted
thesems e.g. legal terms, art & history will be deemed unimportant for the user.

As suggested by the eigen decomposition theorem, we can use identical the left and right
singular vectors for symmetric matrices. In this particular setting we call them eigenvectors,
while the singular values are called eigenvalues. The SVD for CQ takes the following form:

CQ = V̂ Σ̂V̂ T. (4.7)

Let σ̂1 ≥ σ̂2 · · · ≥ σ̂l? > 0 be the eigenvalues of CQ, where l? is the rank of CQ. Therefore,
we define:

Σ̂1/2 = diag
(

√

σ̂1,
√

σ̂2, . . . ,
√

σ̂l?
)

, (4.8)

C
1/2
Q := V̂ Σ̂1/2V̂ T, (4.9)

C
1/2
Q C

1/2
Q = CQ. (4.10)

A matrix C
1/2
Q is called the square root of CQ and a matrix C

1/2
Q := V̂ Σ̂−1/2V̂ T, with Σ̂−1/2 :=

diag
(

1/
√

σ̂1, 1/
√

σ̂2, . . . , 1/
√

σ̂l?
)

, is called the pseudoinverse of CQ. Note that any symmet-
ric matrix has both an associated square root and pseudoinverse.

It has been proved in [82] that the following equation holds:

ŨkŨ
T
k A = arg min

X∈R
m×n,

rank(X)≤k

E
(

∣

∣Q(A − X)
∣

∣

2

)

. (4.11)

PHAROS: Techniques and Algorithms for Social Media Page 82 Version 1.0

for any k, where Ũ Σ̃Ṽ T being a singular value decomposition of C
1/2
Q A. As proposed in the

VLSI Approach, using the query distribution in the computation of the query process is more
efficient than a query-oblivious latent factor analysis. If the query distribution used is that of a
single user, the matrix AṼkṼ

T
k can be seen as a personalized rank-k approximation of A.

Use of Feature Space

We follow the approach of [82] with some modification: Instead of the original document–term
matrix A we use Ak, for k ≈ 300. Likewise, we deal with user queries in feature space, i.e.
instead of the random vector Q we use the random vector Qk := V T

k Q. Since k is small, it
should be possible to make all required computations using standard algorithms.

A further advantage of this approach is that we can profit from the representation of data
in feature space twofold: First, according to experiences with LSI Ak seems to be a better
(i.e. less noisy) representation of the document–term structure. Second, we usually have to
estimate the distribution of Q from a relatively small sample of queries. If this number is q,
then usually q � m and q � n hold. Therefore, it will be difficult to make good estimations of
Q’s co-occurrence matrix. But q and k often will be of similar magnitude, what makes useful
estimations of Q′’s co-occurrence matrix feasible.

Avoid Computation of Co-Occurrence Matrix

In most cases, the distribution of Q is unknown. The only information available about Q is a
finite sample from Q. Instead of making the long way round over estimating Q’s co-occurrence
matrix, we could directly make use of the samples we have.

There are learning algorithms that can incrementally estimate the eigenvectors and eigenval-
ues of the co-occurrence matrix for some random vector, only from samples of this vector.
Therefore, it is possible to estimate CQ’s eigen decomposition from our set of query samples.

But we will use a slightly different approach. Define the random vector Q̃ := AQ. With the
algorithms mentioned above we can learn the eigendecomposition of

CAQ := E
(

(AQ)(AQ)T
)

= E
(

AQQTAT
)

= AE
(

QQT
)

AT.

Now, denote the eigen decomposition of CQ = E
(

QQT
)

by CQ = Ũ Σ̃ŨT. We then have

CAQ = AŨ Σ̃ŨTAT =
(

AŨ Σ̃1/2
)(

AŨ Σ̃1/2
)T

.

Since, for any matrix X, the singular value decomposition is equivalent to the eigen decompo-
sition of XXT, we are able to estimate the singular value decomposition of AŨ Σ̃1/2. Note that
Ũ and Σ̃1/2 contain the eigenvectors and the square-roots of the eigenvalues of CQ. There-

PHAROS: Techniques and Algorithms for Social Media Page 83 Version 1.0

fore, AŨ Σ̃1/2 can be seen as a reweighting of A according to the dominating interests of the
current user.

If we now use only the first k singular vectors and singular values of AŨ Σ̃1/2, this could be a
good personalized approximation to A.

One could also replace A by Ak in this approach in order to make prior use of LSI’s noise-
reducing capabilities.

Conclusions and Future Work

The work presented above is under gradual improvement and is classifed as work-under-

progress. We find the direction revealed by our analysis promising; the next version of the
report will carry more details.

PHAROS: Techniques and Algorithms for Social Media Page 84 Version 1.0

5 Conclusions & Future Work

This report aims at describing novel algorithms in Social media in the context of the PHAROS
project. The vision for PHAROS has an important place for user-driven content; the use of
personalization and recommendation is vital to PHAROS for enhancing the user experience.
While various personalization and recommendation approaches have been identified (and
described by us in Chapter 2), there are few large scale and generalized applications. The
content-based search service of PHAROS will be served well by an accurate and efficient
social-search service. What we have described in Chapter 3 represents the first wave of
approaches which enhance search. Our approach is three pronged: using explicit feedback
on content; using user generated content like tags and comments for semantic analysis; and
finally, using user opinions expressed on external data sources like blogs and review sites.
These approaches will be used to reinforce one another; combined approaches have been
demonstrated to be more effective than individual approaches when it comes to classification
(see Boosting [108]).

Research on improving access to Social Media is vital to the successful exploitation user feed-
back within PHAROS. Clearly, further research is needed to build a scalable social analytics
module. We report here only the initial part of the solution; further research will be reported in
the next version of the report. In parallel, there is design effort in Work Package 3.2 describing
the social model and the storage components for user-related data.

PHAROS: Techniques and Algorithms for Social Media Page 85 Version 1.0

Bibliography

[1] Waqar Ali Shah: What is web 2.0? (2007)

[2] Gruhl, D., Guha, R.V., Kumar, R., Novak, J., Tomkins, A.: The predictive power of online
chatter. In: KDD. (2005) 78–87

[3] Golder, S., Huberman, B.: The Structure of Collaborative Tagging Systems. Arxiv
preprint cs.DL/0508082 (2005)

[4] Bateman, S., Brooks, C., McCalla, G., Brusilovsky, P.: Applying Collaborative Tagging
to E-Learning. Workshop on Tagging at WWW 2007 (2007)

[5] John, A., Seligmann, D.: Collaborative Tagging and Expertise in the Enterprise. Collab.
Web Tagging Workshop in conj. with WWW2006 (2006)

[6] Berendt, B., Hanser, C.: Tags are not Metadata, but Just More Content–to Some Peo-
ple. ICWSM (2007)

[7] Marlow, C., Naaman, M., Boyd, D., Davis, M.: Position Paper, Tagging, Taxonomy,
Flickr, Article, ToRead. Collaborative Web Tagging Workshop at WWW2006, Edinburgh,
Scotland (2006)

[8] Golder, S., Huberman, B.: Usage patterns of collaborative tagging systems. Journal of
Information Science 32 (2006) 198

[9] Zollers, A.: Emerging Motivations for Tagging: Expression, Performance, and Activism.
Collaborative Web Tagging Workshop at WWW2007 (2007)

[10] Maala, M.Z., Delteil, A., Azough, A.: A conversion process from flickr tags to rdf descrip-
tions. In Flejter, D., Kowalkiewicz, M., eds.: Business Information System. Workshop
on Social Aspects of the Web. (2007)

[11] Karger, D., Bakshi, K., Huynh, D., Quan, D., Sinha, V.: Haystack: A Customizable
General-Purpose Information Management Tool for End Users of Semistructured Data.
Proc. of the CIDR Conf., January (2005)

[12] Gemmell, J., Bell, G., Lueder, R.: MyLifeBits: a personal database for everything.
Communications of the ACM 49 (2006) 88–95

[13] Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I). D-Lib
Magazine 11 (2005) 1082–9873

[14] Schmitz, P.: Inducing ontology from flickr tags. Collaborative Web Tagging Workshop
at WWW2006, Edinburgh, Scotland, May (2006)

[15] Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging.
Proceedings of the 16th international conference on World Wide Web (2007) 211–220

[16] Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folk-

86

sonomies: Search and Ranking. Proceedings of the 3rd European Semantic Web
Conference, Budva, Montenegro, June (2006)

[17] Catutto, C., Schmitz, C., Baldassarri, A., Servedio, V.D.P., Loreto, V., Hotho, A., Grahl,
M., Stumme, G.: Network properties of folksonomies. AI Communications Journal
(2007)

[18] Mika, P.: Ontologies are us: A unified model of social networks and semantics. ISWC
3729 (2005) 522–536

[19] Sood, S., Hammond, K., Owsley, S., Birnbaum, L.: TagAssist: Automatic Tag Sugges-
tion for Blog Posts. Proceedings of the International Conference on Weblogs and Social
Media (ICWSM 2007) (2007)

[20] Mishne, G.: AutoTag: a collaborative approach to automated tag assignment for weblog
posts. Proceedings of the 15th international conference on World Wide Web (2006)
953–954

[21] Byde, A., Wan, H., Cayzer, S.: Personalized Tag Recommendations via Social Network
and Content-based Similarity Metrics. Proceedings of the International Conference on
Conference on Weblogs and Social Media (ICWSMŠ06), March (2006)

[22] Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag sugges-
tions. Collaborative Web Tagging Workshop at WWW2006, Edinburgh, Scotland, May
(2006)

[23] Kaser, O., Lemire, D.: Tag-Cloud Drawing: Algorithms for Cloud Visualization. Arxiv
preprint cs.DS/0703109 (2007)

[24] Michlmayr, E., Cayzer, S.: Learning User Profiles from Tagging Data and Leveraging
them for Personal(ized) Information Access. Collaborative Web Tagging Workshop at
WWW2007, Banff, Canada (2007)

[25] Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing
tags over time. Proceedings of the 15th international conference on World Wide Web
(2006) 193–202

[26] Aurnhammer, M., Hanappe, P., Steels, L.: Augmenting Navigation for Collaborative
Tagging with Emergent Semantics. 5th International Semantic Web Conference (ISWC
2006), Athens, GA, USALecture Notes in Computer Science, Springer (2006)

[27] Aurnhammer, M., Hanappe, P., Steels, L.: Integrating collaborative tagging and emer-
gent semantics for image retrieval. Proc. of the Collaborative Web Tagging Workshop
(WWWŠ06) (2006)

[28] Firan, C., Nejdl, W., Paiu, R.: The Benefit of Using Tag-Based Profiles. LaWEB 2007
(2007)

[29] Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social
annotations. Proceedings of the 16th international conference on World Wide Web
(2007) 501–510

[30] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing
order to the web (1998)

PHAROS: Techniques and Algorithms for Social Media Page 87 Version 1.0

[31] Marchetti, A., Tesconi, M., Ronzano, F., Rosella, M., Minutoli, S.: SemKey: A Semantic
Collaborative Tagging System. Collaborative Web Tagging Workshop at WWW2007,
Banff, Canada (2007)

[32] Iturrioz, J., Díaz, O., Arellano, C.: Towards federated Web2.0 sites: the TAGMAS
approach. Collaborative Web Tagging Workshop at WWW2007,Banff, Canada (2007)

[33] Kushal Dave, Steve Lawrence, David M. Pennock: Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews (2003)

[34] Satoshi Morinaga, Kenji Yamanishi, Kenji Tateishi, Toshikazu Fukushima: Mining prod-
uct reputations on the web (2002)

[35] Peter D. Turney: Thumbs up or thumbs down? semantic orientation applied to unsu-
pervised classification of reviews (2002)

[36] Theresa Wilson, Janyce Wiebe, Rebecca Hwa: Just how mad are you? finding strong
and weak opinion clauses (2004)

[37] Tetsuya Nasukawa, Jeonghee Yi: Sentiment analysis: Capturing favorability using nat-
ural language processing (2003)

[38] Bing Liu, Minqing Hu, Junsheng Cheng: Opinion observer: Analyzing and comparing
opinions on the web (2005)

[39] Hong Yu, Vasileios Hatzivassiloglou: Towards answering opinion questions: Separating
facts from opinions and identifying the polarity of opinion sentences (2003)

[40] Fernando Pereira, Naftali Tishby, Lillian Lee: Distributional clustering of english words
(1994)

[41] Dekang Lin: Automatic retrieval and clustering of similar words (1998)

[42] Vasileios Hatzivassiloglou, Kathleen R. McKeown: Predicting the semantic orientation
of adjectives (1997)

[43] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, Katherine Miller:
Introduction to wordnet: An on-line lexical database (1993)

[44] Minqing Hu, Bing Liu: Mining and summarizing customer reviews (2004)

[45] Farah Benamara, Carmine Cesarano, Antonio Picariello, Diego Reforgiato, VS Subrahmanian:
Sentiment analysis: Adjectives and adverbs are better then adjectives alone (2007)

[46] Yu, K., Schwaighofer, A., Tresp, V., Ma, W.Y., Zhang, H.J.: Collaborative ensemble
learning: Combining collaborative and content-based information filtering via hierarchi-
cal bayes. In: Proceedings of UAI, Morgan Kauffman (2003)

[47] Minqing Hu, Bing Liu: Mining opinion features in customer reviews (2004)

[48] Bo Pang, Lillian Lee, Shivakumar Vaithyanathan: Thumbs up? sentiment classification
using machine learning techniques (2002)

[49] Robert E. Shapire, Yoram Singer: Boostexter: A boosting-based system for text cate-
gorization (2000)

[50] William W. Cohen: Learning trees and rules with set-valued features (1996)

[51] Thorsten Joachims: Making large-scale support vector machine learning practical

PHAROS: Techniques and Algorithms for Social Media Page 88 Version 1.0

(1998)

[52] Theresa Wilson, Janyce Wiebe: Annotating opinions in the world press (2003)

[53] Ellen Riloff, Janyce Wiebe: Learning extraction patterns for subjective expression
(2003)

[54] Peter D. Turney, Michael L. Littman: Unsupervised learning of semantic orientation
from a hundred-billion-word corpus (2004)

[55] Kamal Nigam, Matthew Hurst: Towards a robust metric of opinion (2004)

[56] Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filter-
ing recommender systems. ACM Trans. Inf. Syst. 22 (2004) 5–53

[57] Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recom-
mendation algorithms. In: WWW’01: Proceedings of 10th International Conference on
World Wide Web. (2001) 285–295

[58] Goldberg, D., D, N., Oki, B.M., Terry, D.: Collaborative filtering to weave and information
tapestry. Communications of the ACM 35 (1992) 61–70

[59] Shardanand, U.: Social information filtering for music recommendation. Master’s thesis,
Massachussets Institute of Technology (1994)

[60] Shardanand, U., Maes, P.: Social information filtering: Algorithms for automaing “word
of mouth”. In: Proceedings of CHI’95. (1995)

[61] Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: Grouplens: An open
architecture for collaborative filtering of netnews. In: Proceedings of ACM 1994 Confer-
ence on Computer Supported Cooperative Work, ACM, ACM Press (1994) 175–186

[62] Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40 (1997) 56–58

[63] Montaner, M., Lopez, B., de la Rosa, J.L.: A taxonomy of recommender agents on the
internet. Artificial Intelligence Review (2003) 285–330

[64] Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Index-
ing by latent semantic analysis. Journal of the American Society of Information Science
41 (1990) 391–407

[65] Gorrell, G.: Generalized hebbian algorithm for incremental singular value decomposi-
tion in natural language processing. In: EACL. (2006)

[66] Kolda, T.G., O’Leary, D.P.: A semidiscrete matrix decomposition for latent semantic
indexing information retrieval. ACM Trans. Inf. Syst. 16 (1998) 322–346

[67] Papadimitriou, C.H., Tamaki, H., Raghavan, P., Vempala, S.: Latent semantic index-
ing: A probabilistic analysis. In: ACM Conference on Principles of Database Systems
(PODS). (1998) 159–168

[68] Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications
to image and text data. In: KDD ’01: Proceedings of the seventh ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, New York, NY, USA, ACM
Press (2001) 245–250

[69] Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs

PHAROS: Techniques and Algorithms for Social Media Page 89 Version 1.0

and matrices. In: SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, Philadelphia, PA, USA, Society for Industrial and Applied Math-
ematics (1999) 291–299

[70] Frieze, A., Kannan, R., Vempala, S.: Fast monte-carlo algorithms for finding low-rank
approximations. J. ACM 51 (2004) 1025–1041

[71] Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via
the singular value decomposition. Mach. Learn. 56 (2004) 9–33

[72] Drineas, P., Drinea, E., Huggins, P.: An experimental evaluation of a monte-carlo algo-
rithm for singular value decomposition. In editor = to be added, ed.: booktitle = to be
added, publisher = to be added (year = to be added)

[73] Drinea, E., Drineas, P., Huggins, P.: A randomized singular value decomposition algo-
rithm for image processing applications. In editor = to be added, ed.: booktitle = to be
added, publisher = to be added (year = to be added)

[74] Grossman, D.: Experiments on an algorithm for fast matrix singular value decomposi-
tion and low-rank approximation (1998)

[75] Jiang, F., Kannan, R., Littman, M.L., Vempala, S.: Efficient singular value decompo-
sition via improved document sampling. In editor = to be added, ed.: booktitle = to be
added, publisher = to be added (1999)

[76] Tang, C., Dwarkadas, S., Xu, Z.: On Scaling Latent Semantic Indexing for Large Peer-
to-Peer Systems. In editor = to be added, ed.: booktitle = to be added, publisher = to
be added (2004)

[77] Gene Golub, Knut Solna, P.V.D.: Computing the svd of a general matrix prod-
uct/quotient. In editor = to be added, ed.: booktitle = to be added, publisher = to be
added (2000)

[78] Claver, J.M., Mollar, M., Hernández, V.: Parallel computation of the svd of a matrix
product. In: Proceedings of the 6th European PVM/MPI Users’ Group Meeting on Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface, London, UK,
Springer-Verlag (1999) 388–395

[79] Bobda, C., Steenbock, N.: Singular value decomposition on distributed reconfigurable
systems. In: RSP ’01: Proceedings of the 12th International Workshop on Rapid System
Prototyping, Washington, DC, USA, IEEE Computer Society (2001) 38

[80] Ye, J.: Generalized low rank approximations of matrices. Mach. Learn. 61 (2005)
167–191

[81] Kurucz, M., Benczur, A.A., Csalogany, K.: Methods for large scale svd with missing
values. In editor = to be added, ed.: booktitle = to be added, publisher = to be added
(2007)

[82] Dasgupta, A., Kumar, R., Raghavan, P., Tomkins, A.: Variable Latent Semantic Index-
ing. In Grossman, R., Bayardo, R., Bennett, K.P., eds.: Proceeding of the 11th ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD 2005),
ACM Press (2005) 13–21

PHAROS: Techniques and Algorithms for Social Media Page 90 Version 1.0

[83] : (Interactive advertising burea)

[84] Bruner, R.E.: The decade in online advertising. In: http://www.doubleclick.com. (2004)

[85] Gruhl, D., Guha, R.V., Liben-Nowell, D., Tomkins, A.: Information diffusion through
blogspace. In: WWW. (2004) 491–501

[86] Song, X., Tseng, B.L., Lin, C.Y., Sun, M.T.: Personalized recommendation driven by
information flow. In: SIGIR. (2006) 509–516

[87] Guha, R.V., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust.
In: WWW. (2004) 403–412

[88] Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of blogspace.
In: WWW. (2003) 568–576

[89] Gomez, L.M., Lochbaum, C.C., Landauer, T.K.: All the right words: Finding what you
want as a function of richness of indexing vocabulary. JASIS 41 (1990) 547–559

[90] Hofmann, T.: Probabilistic latent semantic analysis. In: UAI. (1999) 289–296

[91] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. In: NIPS. (2001) 601–608

[92] Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In:
SIGMOD Conference. (2000) 1–12

[93] El-Sayed, M., Ruiz, C., Rundensteiner, E.A.: Fs-miner: efficient and incremental mining
of frequent sequence patterns in web logs. In: WIDM. (2004) 128–135

[94] Grarovetter, M.: Threshold models of collective behavior. Americal Journal of Socialogy
83-6 (1987) 1420–1443

[95] Jacob Goldenberg, B.L., Muller, E.: Talk of network: A complex systems look at the
underlying process of word-of-mouth. Marketing Letters 12-3 (2001) 211–223

[96] Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining — a
general survey and comparison. SIGKDD Explorations 2 (2000) 58–64

[97] Bo Pang and Lillian Lee: Seeing stars: Exploiting class relationships for sentiment cat-
egorization with respect to rating scales. Proceedings of the ACL (2005)

[98] Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith, Daniel M. Ogilvie and associates:
The general inquirer: A computer approach to content analysis (1966)

[99] Edward Kelly and Philip Stone: Computer recognition of english word senses (1975)

[100] Boullé, M.: Khiops: A statistical discretization method of continuous attributes. Machine
Learning 55 (2004) 53–69

[101] Marc Boullé: Compression-based averaging of selective naive bayes classifiers (2007)

[102] Celma, O., Ramirez, M., Herrera, P.: Foafing the music: A music recommendation
system based on rss feeds and user preferences. Proceedings of the 6th International
Conference on Music Information Retrieval (ISMIR) (2005)

[103] Yoshii, K., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Hybrid collaborative and
content-based music recommendation using probabilistic model with latent user prefer-
ences. Proceedings of the 7th International Conference on Music Information Retrieval
(ISMIR) (2006)

PHAROS: Techniques and Algorithms for Social Media Page 91 Version 1.0

[104] Pauws, S., Verhaegh, W., Vossen, M.: Fast generation of optimal music playlists using
local search. Proceedings of the 6th International Conference on Music Information
Retrieval (ISMIR) (2006)

[105] Whitman, B., Lawrence, S.: Inferring descriptions and similarity for music from commu-
nity metadata. Proceedings of the International Computer Music Conference (ICMC)
(2002)

[106] Byde, A., Wan, H., Cayzer, S.: Personalized tag recommendations via tagging and
content-based similarity metrics. Proceedings of the International Conference on We-
blogs and Social Media (ICWSM) (2007)

[107] Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant doc-
uments. Proc. of the 23th Intl. ACM SIGIR Conf. on Research and development in
information retrieval (2000)

[108] Schapire, R.: The strength of weak learnability. Machine Learning 5 (1990) 197–227

PHAROS: Techniques and Algorithms for Social Media Page 92 Version 1.0

	Introduction
	What is Social Media?
	Social Media in PHAROS

	State of the Art
	Collaborative Tagging
	Motivations for tagging
	Characteristics of tags - strengths and problems
	Tagging habits and time sensitivity
	Clustering tags and building ontologies from Folksonomies
	Approaches to support tagging - Tag suggestions
	Enhanced information access via tags / browsing by tags
	Exploring tags for (multimedia) information retrieval

	Opinion mining
	NLP shallow parsing
	Machine Learning Techniques
	Combination of NLP and Machine Learning

	Blog Analysis
	Overview of Blogs and public forums
	Building user profiles from Blogs

	Recommendation Algorithms
	Collaborative filtering

	Recommendation and Latent Semantic Analysis
	Conclusions

	Algorithms For Creating User Profiles
	Creating A User Profile By Analyzing User's Tags
	Analysis Of User Tags
	Tagging Habits
	Time Sensitivity
	Tag Usage Frequency
	Tag Co-occurrence Usage Frequency
	Lexical Analysis
	Algorithm and Evaluation Result
	Optional features
	Suggestions for handling tags within Pharos
	Conclusions and future work

	Information Diffusion In Blogosphere
	Problem Definition
	Discovery of Information Diffusion Paths
	Performance Study
	Related Work
	Conclusions and Future Work

	Opinion analysis in user-created textual contents
	Review analysis using NLP approach
	Opinion analysis using machine learning techniques approach
	Conclusion and perspectives

	Algorithms For Personalization and Recommendation
	Using User Generated Metadata For Music Recommendation
	Related Work
	Tag-Based Profiles vs. Track-Based Profiles
	Track-based Profiles
	Tag-based Profiles
	Music Recommendations
	Track-based Recommendations
	Tag-Based Recommendations
	Tag-Based Search
	Evaluation & Results

	Personalized Ranking using LSI
	Singular Value Decomposition (SVD)
	Latent Semantic Analysis
	Personalized VLSI

	Conclusions & Future Work

